Calabi type functionals for coupled Kähler–Einstein metrics

被引:0
|
作者
Satoshi Nakamura
机构
[1] Tokyo Institute of Technology,Department of Mathematics
来源
关键词
Coupled Kähler–Einstein metric; Coupled Ding functional; Matsushima type decomposition theorem; Primary 53C25; Secondary 53C55; 58E11;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the coupled Ricci–Calabi functional and the coupled H-functional which measure how far a Kähler metric is from a coupled Kähler–Einstein metric in the sense of Hultgren–Witt Nyström. We first give corresponding moment weight type inequalities which estimate each functional in terms of algebraic invariants. Secondly, we give corresponding Hessian formulas for these functionals at each critical point, which have an application to a Matsushima type obstruction theorem for the existence of a coupled Kähler–Einstein metric.
引用
收藏
相关论文
共 50 条
  • [1] Calabi type functionals for coupled Kahler-Einstein metrics
    Nakamura, Satoshi
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 64 (02)
  • [2] The Calabi metric for the space of Kähler metrics
    Simone Calamai
    Mathematische Annalen, 2012, 353 : 373 - 402
  • [3] On the Completeness of Some Bianchi Type A and Related Kähler–Einstein Metrics
    Gideon Maschler
    Robert Ream
    The Journal of Geometric Analysis, 2021, 31 : 8347 - 8384
  • [4] Families of conic Kähler–Einstein metrics
    Henri Guenancia
    Mathematische Annalen, 2020, 376 : 1 - 37
  • [5] Kähler–Einstein metrics on Fano manifolds
    Gang Tian
    Japanese Journal of Mathematics, 2015, 10 : 1 - 41
  • [6] Quasi-Einstein Kähler Metrics
    Henrik Pedersen
    Christina Tønnesen-Friedman
    Galliano Valent
    Letters in Mathematical Physics, 1999, 50 : 229 - 241
  • [7] Conical Kähler–Einstein Metrics Revisited
    Chi Li
    Song Sun
    Communications in Mathematical Physics, 2014, 331 : 927 - 973
  • [8] Kähler–Einstein metrics on group compactifications
    Thibaut Delcroix
    Geometric and Functional Analysis, 2017, 27 : 78 - 129
  • [9] On the Curvature of Conic Kähler–Einstein Metrics
    Claudio Arezzo
    Alberto Della Vedova
    Gabriele La Nave
    The Journal of Geometric Analysis, 2018, 28 : 265 - 283
  • [10] Kähler-Einstein metrics and projective embeddings
    Dominique Hulin
    The Journal of Geometric Analysis, 2000, 10 (3): : 525 - 528