Fibrations of Genus Two on Complex Surfaces

被引:0
|
作者
Julio Rebelo
Bianca Santoro
机构
[1] Université de Toulouse,Institut de Mathématiques de Toulouse
[2] UPS,Mathematics Department
[3] INSA,undefined
[4] UT1,undefined
[5] UT2,undefined
[6] CNRS,undefined
[7] Institut de Mathématiques de Toulouse,undefined
[8] UMR 5219,undefined
[9] The City College of New York,undefined
来源
Results in Mathematics | 2011年 / 60卷
关键词
14D06; 32S65; 37F75; Fibrations; holomorphic foliations;
D O I
暂无
中图分类号
学科分类号
摘要
This work is devoted to the study of fibrations of genus 2 by using as its main tool the theory of singular holomorphic foliations. In particular we obtain a sharp differentiable version of Matsumoto–Montesinos theory. In the case of isotrivial fibrations, these methods are powerful enough to provide a detailed global picture of the both the ambient surface and of the structure of the fibrations itself.
引用
收藏
页码:369 / 403
页数:34
相关论文
共 50 条