Contraction of surfaces by harmonic mean curvature flows and nonuniqueness of their self similar solutions

被引:0
|
作者
Koichi Anada
机构
[1] Department of Applied Physics,
[2] Waseda University,undefined
[3] 169-8555 Tokyo,undefined
[4] Japan ,undefined
关键词
Evolution Equation; Normal Vector; Curvature Flow; Similar Solution; Outer Normal Vector;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the evolution equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_t=-(H_{-1})^{\alpha}\nu$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu$\end{document} is the unit outer normal vector and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{-1}$\end{document} is the harmonic mean curvature defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{-1}=((\kappa_1^{-1}+\kappa_2^{-1})/2)^{-1}$\end{document}. In this paper, we prove the nonuniqueness of their strictly convex self similar solutions for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1$\end{document}. This result implies that there are non-spherical self similar solutions.
引用
收藏
页码:109 / 116
页数:7
相关论文
共 50 条