Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster

被引:0
|
作者
Dirk Erhard
Julián Martínez
Julien Poisat
机构
[1] Warwick University,Mathematics Institute
[2] Conicet,Instituto de Investigaciones Matemáticas Luis A. Santaló
[3] Université Paris-Dauphine,CEREMADE, UMR CNRS 7534
[4] PSL Research University,undefined
来源
关键词
Continuum percolation; Brownian motion; Poisson point process; Phase transition; Boolean percolation; Primary 60K35; 60J65; 60G55; Secondary 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a continuum percolation model on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}. For t,λ∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t,\lambda \in (0,\infty )$$\end{document} and d∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \{1,2,3\}$$\end{document}, the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}. When d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}, the Brownian paths are replaced by Wiener sausages with radius r>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r>0$$\end{document}. We establish that, for d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document} and all choices of t, no percolation occurs, whereas for d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, there is a non-trivial percolation transition in t, provided λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and r are chosen properly. The last statement means that λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when d∈{2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \{2,3\}$$\end{document}, but finite and dependent on r when d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}). We further show that for all d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.
引用
收藏
页码:784 / 812
页数:28
相关论文
共 12 条
  • [1] Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
    Erhard, Dirk
    Martinez, Julian
    Poisat, Julien
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (03) : 784 - 812
  • [2] Phase Transition and Uniqueness of Levelset Percolation
    Broman, Erik
    Meester, Ronald
    JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (06) : 1376 - 1400
  • [3] Phase Transition and Uniqueness of Levelset Percolation
    Erik Broman
    Ronald Meester
    Journal of Statistical Physics, 2017, 167 : 1376 - 1400
  • [4] Cluster percolation and chiral phase transition
    Beccaria, M
    Moro, A
    PHYSICAL REVIEW D, 2002, 66 (03):
  • [5] Tomographic-like reconstruction of the percolation cluster as a phase transition
    Shimoni, N
    Azulai, D
    Balberg, I
    Millo, O
    PHYSICAL REVIEW B, 2002, 66 (02)
  • [6] Variation of cluster properties in lattice percolation problem: A prototype of phase transition
    B. Borštnik
    D. Lukman
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 16 : 113 - 117
  • [7] Phase Transition for the Speed of the Biased Random Walk on the Supercritical Percolation Cluster
    Fribergh, Alexander
    Hammond, Alan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (02) : 173 - 245
  • [8] Variation of cluster properties in lattice percolation problem: A prototype of phase transition
    Borstnik, B
    Lukman, D
    EUROPEAN PHYSICAL JOURNAL B, 2000, 16 (01): : 113 - 117
  • [9] Heterogeneous percolation-to-cluster transition in phase separation of an off-critical polymer mixture
    Takeno, H
    Nakamura, E
    Hashimoto, T
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (07): : 3612 - 3620
  • [10] Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs
    Antunovic, Tonci
    Veselic, Ivan
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (05) : 983 - 1009