Nilpotency degree of integral cohomology classes of p-groups

被引:0
|
作者
P. A. Minh
机构
[1] Department of Mathematics,
[2] College of Sciences,undefined
[3] University of Hue,undefined
[4] Dai hoc Khoa hoc,undefined
[5] 77 Nguyen Hue Street,undefined
[6] Hue,undefined
[7] Vietnam¶ e-mail: paminh@dng.vnn.vn,undefined
[8] Current Address: Department of Mathematics,undefined
[9] UMIST,undefined
[10] P.O. Box 88,undefined
[11] Manchester M60 1QD,undefined
[12] England¶ e-mail: M.Pham@umist.ac.uk,undefined
来源
Archiv der Mathematik | 2002年 / 79卷
关键词
Prime Number; Cohomology Class; Proper Subgroup; Integral Cohomology; Nilpotence Degree;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime number and let G be a p-group which is not elementary abelian. For every integral cohomology class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi $\end{document} of G which restricts trivially to all proper subgroups, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi^{p} = 0 $\end{document} if p > 2 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textrm{deg}(\xi) $\end{document} is even, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi^{3} = 0 $\end{document} if p = 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \textrm{deg}(\xi) $\end{document} is odd. This result is applied to get an upper bound, which is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frac{|G|}{p} $\end{document}, for the nilpotence degrees of nilpotent integral cohomology classes of G.
引用
收藏
页码:328 / 334
页数:6
相关论文
共 50 条