Finite Diffeomorphism Types of Four Dimensional Ricci Flow with Bounded Scalar Curvature
被引:0
|
作者:
Wen Shuai Jiang
论文数: 0引用数: 0
h-index: 0
机构:Zhejiang University,School of Mathematical Sciences
Wen Shuai Jiang
机构:
[1] Zhejiang University,School of Mathematical Sciences
来源:
Acta Mathematica Sinica, English Series
|
2021年
/
37卷
关键词:
Ricci flow;
scalar curvature;
53C44;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we consider Ricci flow on four dimensional closed manifold with bounded scalar curvature, noncollasping volume and bounded diameter. Under such conditions, we can show that the manifold has finitely many diffeomorphism types, which generalizes Cheeger-Naber’s result to bounded scalar curvature along Ricci flow. In particular, this implies the manifold has uniform L2 Riemann curvature bound. As an application, we point out that four dimensional Ricci flow would not have uniform scalar curvature upper bound if the initial metric only satisfying lower Ricci curvature bound, lower volume bound and upper diameter bound.
机构:
Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyQueen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
Buzano, Reto
Di Matteo, Gianmichele
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, EnglandQueen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
机构:
Univ Luxembourg, Math Res Unit, FSTC, Campus Belval,Maison Nombre,6 Ave Fonte, L-4364 Esch Sur Alzette, LuxembourgUniv Luxembourg, Math Res Unit, FSTC, Campus Belval,Maison Nombre,6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg