Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel

被引:0
|
作者
J. F. Gómez-Aguilar
R. F. Escobar-Jiménez
M. G. López-López
V. M. Alvarado-Martínez
机构
[1] Interior Internado Palmira S/N,CONACyT
[2] Col. Palmira,Tecnológico Nacional de México/CENIDET
[3] Interior Internado Palmira S/N,Tecnológico Nacional de México/CENIDET
[4] Col. Palmira,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the two-dimensional projectile motion was studied; for this study two cases were considered, for the first one, we considered that there is no air resistance and, for the second case, we considered a resisting medium k . The study was carried out by using fractional calculus. The solution to this study was obtained by using fractional operators with power law, exponential decay and Mittag-Leffler kernel in the range of γ∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma \in (0,1]$\end{document} . These operators were considered in the Liouville-Caputo sense to use physical initial conditions with a known physical interpretation. The range and the maximum height of the projectile were obtained using these derivatives. With the aim of exploring the validity of the obtained results, we compared our results with experimental data given in the literature. A multi-objective particle swarm optimization approach was used for generating Pareto-optimal solutions for the parameters k and γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} for different fixed values of velocity v0 and angle θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \theta$\end{document} . The results showed some relevant qualitative differences between the use of power law, exponential decay and Mittag-Leffler law.
引用
收藏
相关论文
共 50 条
  • [1] Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [2] On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory
    Avalos-Ruiz, L. F.
    Gomez-Aguilar, J. F.
    Atangana, A.
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 364 - 388
  • [3] COMPARING THE NEW FRACTIONAL DERIVATIVE OPERATORS INVOLVING EXPONENTIAL AND MITTAG-LEFFLER KERNEL
    Yavuz, Mehmet
    Ozdemir, Necati
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 995 - 1006
  • [4] Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel
    Ozarslan, Ramazan
    Bas, Erdal
    Baleanu, Dumitru
    Acay, Bahar
    AIMS MATHEMATICS, 2020, 5 (01): : 467 - 481
  • [5] Chaos in a Cancer Model via Fractional Derivatives with Exponential Decay and Mittag-Leffler Law
    Francisco Gomez-Aguilar, Jose
    Guadalupe Lopez-Lopez, Maria
    Manuel Alvarado-Martinez, Victor
    Baleanu, Dumitru
    Khan, Hasib
    ENTROPY, 2017, 19 (12):
  • [6] Marine system dynamical response to a changing climate in frame of power law, exponential decay, and Mittag-Leffler kernel
    Sekerci, Yadigar
    Ozarslan, Ramazan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5480 - 5506
  • [7] On positivity and monotonicity analysis for discrete fractional operators with discrete Mittag-Leffler kernel
    Mohammed, Pshtiwan Othman
    Goodrich, Christopher S.
    Hamasalh, Faraidun Kadir
    Kashuri, Artion
    Hamed, Y. S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6391 - 6410
  • [8] New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
    Gomez-Aguilar, J. F.
    Atangana, Abdon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [9] New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications
    J. F. Gómez-Aguilar
    Abdon Atangana
    The European Physical Journal Plus, 132
  • [10] Analysis of the fractional diarrhea model with Mittag-Leffler kernel
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Shahzad, Muhammad
    Iqbal, Zafar
    Rafiq, Muhammad
    Jarad, Fahd
    AIMS MATHEMATICS, 2022, 7 (07): : 13000 - 13018