Front propagation for integro-differential KPP reaction–diffusion equations in periodic media

被引:0
|
作者
Panagiotis E. Souganidis
Andrei Tarfulea
机构
[1] The University of Chicago,Department of Mathematics
[2] Louisiana State University,Department of Mathematics
关键词
Homogenization; Reaction–diffusion equations; Nonlocal integro-differential equations; Fisher-KPP equation; Viscosity theory; 35B40; 35K57; 47G20; 45G10.;
D O I
暂无
中图分类号
学科分类号
摘要
We study front propagation phenomena for a large class of KPP-type integro-differential reaction–diffusion equations of order α∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,2)$$\end{document} in oscillatory environments, which model various forms of population growth with periodic dependence. We show that, under an exponential rescaling, the solution develops an isotropic advancing front and converges locally uniformly to zero beyond the front and to the periodic stationary state behind the front. The results are the most general available in this general setting.
引用
收藏
相关论文
共 50 条