Computing the Largest Bond and the Maximum Connected Cut of a Graph

被引:0
|
作者
Gabriel L. Duarte
Hiroshi Eto
Tesshu Hanaka
Yasuaki Kobayashi
Yusuke Kobayashi
Daniel Lokshtanov
Lehilton L. C. Pedrosa
Rafael C. S. Schouery
Uéverton S. Souza
机构
[1] Fluminense Federal University,
[2] Kyushu University,undefined
[3] Chuo University,undefined
[4] Kyoto University,undefined
[5] University of California Santa Barbara,undefined
[6] University of Campinas,undefined
来源
Algorithmica | 2021年 / 83卷
关键词
Bond; Cut; Maximum cut; Connected cut; FPT; Treewidth; Clique-width;
D O I
暂无
中图分类号
学科分类号
摘要
The cut-set ∂(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial (S)$$\end{document} of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} is the set of edges that have one endpoint in S⊂V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subset V$$\end{document} and the other endpoint in V\S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\setminus S$$\end{document}, and whenever G[S] is connected, the cut [S,V\S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S,V\setminus S]$$\end{document} of G is called a connected cut. A bond of a graph G is an inclusion-wise minimal disconnecting set of G, i.e., bonds are cut-sets that determine cuts [S,V\S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[S,V\setminus S]$$\end{document} of G such that G[S] and G[V\S]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[V\setminus S]$$\end{document} are both connected. Contrasting with a large number of studies related to maximum cuts, there exist very few results regarding the largest bond of general graphs. In this paper, we aim to reduce this gap on the complexity of computing the largest bond, and the maximum connected cut of a graph. Although cuts and bonds are similar, we remark that computing the largest bond and the maximum connected cut of a graph tends to be harder than computing its maximum cut. We show that it does not exist a constant-factor approximation algorithm to compute the largest bond, unless P=NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ P }= \text{ NP }$$\end{document}. Also, we show that Largest Bond and Maximum Connected Cut are NP-hard even for planar bipartite graphs, whereas Maximum Cut is trivial on bipartite graphs and polynomial-time solvable on planar graphs. In addition, we show that Largest Bond and Maximum Connected Cut are NP-hard on split graphs, and restricted to graphs of clique-width w they can not be solved in time f(w)no(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w) n^{{o}(w)}$$\end{document} unless the Exponential Time Hypothesis fails, but they can be solved in time f(w)nO(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w) n^{{O}(w)}$$\end{document}. Finally, we show that both problems are fixed-parameter tractable when parameterized by the size of the solution, the treewidth, and the twin-cover number.
引用
收藏
页码:1421 / 1458
页数:37
相关论文
共 50 条
  • [1] Computing the Largest Bond and the Maximum Connected Cut of a Graph
    Duarte, Gabriel L.
    Eto, Hiroshi
    Hanaka, Tesshu
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Lokshtanov, Daniel
    Pedrosa, Lehilton L. C.
    Schouery, Rafael C. S.
    Souza, Ueverton S.
    ALGORITHMICA, 2021, 83 (05) : 1421 - 1458
  • [2] ON THE LARGEST TREE OF GIVEN MAXIMUM DEGREE IN A CONNECTED GRAPH
    CARO, Y
    KRASIKOV, I
    RODITTY, Y
    JOURNAL OF GRAPH THEORY, 1991, 15 (01) : 7 - 13
  • [3] FINDING MAXIMUM CUT IN A GRAPH
    ORLOVA, GI
    DORFMAN, YG
    ENGINEERING CYBERNETICS, 1972, 10 (03): : 502 - 506
  • [4] On the largest eigenvalue of the distance matrix of a connected graph
    Zhou, Bo
    Trinajstic, Nenad
    CHEMICAL PHYSICS LETTERS, 2007, 447 (4-6) : 384 - 387
  • [5] UNIFYING MAXIMUM CUT AND MINIMUM CUT OF A PLANAR GRAPH
    SHIH, WK
    WU, S
    KUO, YS
    IEEE TRANSACTIONS ON COMPUTERS, 1990, 39 (05) : 694 - 697
  • [6] Maximum reachability preserved graph cut
    Miao, Dongjing
    Li, Jianzhong
    Cai, Zhipeng
    THEORETICAL COMPUTER SCIENCE, 2020, 840 (840) : 187 - 198
  • [7] CHARACTERIZING THE MAXIMUM GENUS OF A CONNECTED GRAPH
    NEBESKY, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1993, 43 (01) : 177 - 185
  • [8] On maximum leaf trees and connections to connected maximum cut problems
    Gandhi, Rajiv
    Hajiaghayi, Mohammad Taghi
    Kortsarz, Guy
    Purohit, Manish
    Sarpatwar, Kanthi
    INFORMATION PROCESSING LETTERS, 2018, 129 : 31 - 34
  • [9] Largest connected component of a star graph with faulty vertices
    Yang, Xiaofan
    Megson, Graham M.
    Tang, Yuan Yan
    Xing, Yongkang
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (12) : 1771 - 1778
  • [10] From Graph Orientation to the Unweighted Maximum Cut
    Ben-Ameur, Walid
    Glorieux, Antoine
    Neto, Jose
    COMPUTING AND COMBINATORICS, COCOON 2016, 2016, 9797 : 370 - 384