Natural exponential families associated to Pick functions

被引:0
|
作者
Dhafer Malouche
机构
[1] UMR C55830,Laboratoire de Statistique et Probabilités
来源
Test | 1998年 / 7卷
关键词
Pick function; variance function; exponential families; quadratic action; 32E20; 60E07; 60E10; 62E10;
D O I
暂无
中图分类号
学科分类号
摘要
We define a quadratic action of the group of invertible (2,2) matrices of determinant 1 by Mœbius transformsh(x)=(ax+b)/(cx+d) on the natural exponential families (NEF) on ℝ which changes the mean functionk′ of the NEFF in the new mean functionh(k′) associated to the new NEF, denoted byh(F). The variance function ofh(F) is(cm+d)2VF(h(m)). Whenz→k′(z) orz→a k′ (a logz) happens to be a Pick function,h(F) can be explicitely described. We prove that certain cubic NEF belong to this type. This fact leads us to a classification of the variance functionsP(m)/m, where the polynomialP has degree ≤3 without complex zeros.
引用
收藏
页码:391 / 412
页数:21
相关论文
共 50 条