Laboratory analogue of a supersonic accretion column in a binary star system

被引:0
|
作者
J. E. Cross
G. Gregori
J. M. Foster
P. Graham
J. -M. Bonnet-Bidaud
C. Busschaert
N. Charpentier
C. N. Danson
H. W. Doyle
R. P. Drake
J. Fyrth
E. T. Gumbrell
M. Koenig
C. Krauland
C. C. Kuranz
B. Loupias
C. Michaut
M. Mouchet
S. Patankar
J. Skidmore
C. Spindloe
E. R. Tubman
N. Woolsey
R. Yurchak
É. Falize
机构
[1] Clarendon Laboratory,Department of Atmospheric
[2] University of Oxford,Department of Physics
[3] AWE,undefined
[4] Aldermaston,undefined
[5] Service d‘Astrophysique-Laboratoire AIM,undefined
[6] CEA/DSM/Irfu,undefined
[7] CEA-DAM-DIF,undefined
[8] First Light Fusion Ltd,undefined
[9] Unit 10 Oxford Industrial Park,undefined
[10] Mead Road,undefined
[11] Oceanic and Space Sciences,undefined
[12] University of Michigan,undefined
[13] LULI-CNRS,undefined
[14] Ecole Polytechnique,undefined
[15] CEA: Université Paris-Saclay,undefined
[16] UPMC Univ Paris 06: Sorbonne Universités-F-91128,undefined
[17] Institute for Academic Initiatives,undefined
[18] Osaka University,undefined
[19] Suita,undefined
[20] LUTH,undefined
[21] Observatoire de Paris,undefined
[22] PSL Research University,undefined
[23] CNRS,undefined
[24] Université Paris Diderot,undefined
[25] Sorbonne Paris Cité,undefined
[26] Target Fabrication Group,undefined
[27] Central Laser Facility,undefined
[28] Rutherford Appleton Laboratory,undefined
[29] Harwell Science and Innovation Campus,undefined
[30] York Plasma Institute,undefined
[31] University of York,undefined
来源
Nature Communications | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy—gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100–1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions.
引用
收藏
相关论文
empty
未找到相关数据