Complex query answering over knowledge graphs foundation model using region embeddings on a lie group

被引:2
|
作者
Zhou, Zhengyun [1 ,2 ,3 ,4 ]
Wan, Guojia [1 ,2 ,3 ,4 ]
Pan, Shirui [5 ,6 ]
Wu, Jia [7 ]
Hu, Wenbin [1 ,2 ,3 ,4 ]
Du, Bo [1 ,2 ,3 ,4 ]
机构
[1] Wuhan Univ, Inst Artificial Intelligence, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Hubei, Peoples R China
[3] Hubei Luojia Lab, Wuhan 430072, Hubei, Peoples R China
[4] Wuhan Univ, Hubei Key Lab Multimedia & Network Commun Engn, Wuhan 430072, Hubei, Peoples R China
[5] Griffith Univ, Sch Informat & Commun Technol, Southport, Qld, Australia
[6] Griffith Univ, Inst Integrated & Intelligent Syst IIIS, Southport, Qld, Australia
[7] Macquarie Univ, Artificial Intelligence Res Ctr Australia, Sydney, NSW, Australia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Knowledge grpah; Complex logical reasoning; Multi-hop reasoning; Knowledge reasoning;
D O I
10.1007/s11280-024-01254-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Answering complex queries with First-order logical operators over knowledge graphs, such as conjunction (perpendicular to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document}), disjunction (proves\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vee $$\end{document}), and negation ( not sign \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lnot $$\end{document}) is immensely useful for identifying missing knowledge. Recently, neural symbolic reasoning methods have been proposed to map entities and relations into a continuous real vector space and model logical operators as differential neural networks. However, traditional methodss employ negative sampling, which corrupts complex queries to train embeddings. Consequently, these embeddings are susceptible to divergence in the open manifold of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document}. The appropriate regularization is crucial for addressing the divergence of embeddings. In this paper, we introduces a Lie group as a compact embedding space for complex query embedding, enhancing ability to handle the intricacies of knowledge graphs the foundation model. Our method aims to solve the query of disjunctive and conjunctive problems. Entities and queries are represented as a region of a high-dimensional torus, where the projection, intersection, union, and negation of the torus naturally simulate entities and queries. After simulating the operations on the region of the torus we defined, we found that the resulting geometry remains unchanged. Experiments show that our method achieved a significant improvement on FB15K, FB15K-237, and NELL995. Through extensive experiments on datasets FB15K, FB15K-237, and NELL995, our approach demonstrates significant improvements, leveraging the strengths of knowledge graphs foundation model and complex query processing.
引用
收藏
页数:22
相关论文
共 48 条
  • [1] Efficient Embeddings of Logical Variables for Query Answering over Incomplete Knowledge Graphs
    Wang, Dingmin
    Chen, Yeyuan
    Grau, Bernardo Cuenca
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4652 - 4659
  • [2] Complex Query Augmentation for Question Answering over Knowledge Graphs
    Abdelkawi, Abdelrahman
    Zafar, Hamid
    Maleshkova, Maria
    Lehmann, Jens
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2019 CONFERENCES, 2019, 11877 : 571 - 587
  • [3] Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs
    Maheshwari, Gaurav
    Trivedi, Priyansh
    Lukovnikov, Denis
    Chakraborty, Nilesh
    Fischer, Asja
    Lehmann, Jens
    SEMANTIC WEB - ISWC 2019, PT I, 2019, 11778 : 487 - 504
  • [4] Question Answering over Knowledge Graphs with Query Path Generation
    Yang, Linqing
    Guo, Kecen
    Liu, Bo
    Gong, Jiazheng
    Zhang, Zhujian
    Zhao, Peiyu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 146 - 158
  • [5] Question Answering over Knowledge Base using Language Model Embeddings
    Sai Sharath, Japa
    Banafsheh, Rekabdar
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [6] Query2Triple: Unified Query Encoding for Answering Diverse Complex Queries over Knowledge Graphs
    Xu, Yao
    He, Shizhu
    Wang, Cunguang
    Cai, Li
    Liu, Kang
    Zhao, Jun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 11369 - 11382
  • [7] Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings
    Saxena, Apoory
    Tripathi, Aditay
    Talukdar, Partha
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 4498 - 4507
  • [8] Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions Over Knowledge Graphs
    Chen, Yongrui
    Li, Huiying
    Qi, Guilin
    Wu, Tianxing
    Wang, Tenggou
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 8343 - 8357
  • [9] NQE: N-ary Query Embedding for Complex Query Answering over Hyper-Relational Knowledge Graphs
    Luo, Haoran
    Haihong, E.
    Yang, Yuhao
    Zhou, Gengxian
    Guo, Yikai
    Yao, Tianyu
    Tang, Zichen
    Lin, Xueyuan
    Wan, Kaiyang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4543 - 4551
  • [10] KnowlyBERT - Hybrid Query Answering over Language Models and Knowledge Graphs
    Kalo, Jan-Christoph
    Fichtel, Leandra
    Ehler, Philipp
    Balke, Wolf-Tilo
    SEMANTIC WEB - ISWC 2020, PT I, 2020, 12506 : 294 - 310