Multivariate L1 mean

被引:0
|
作者
Yadolah Dodge
Valentin Rousson
机构
[1] Statistics Group,
[2] University of Neuchâtel,undefined
[3] P.O. Box 1825,undefined
[4] CH-2002 Neuchâtel,undefined
[5] Switzerland (e-mail: yadolah.dodge@seco.unine.ch),undefined
来源
Metrika | 1999年 / 49卷
关键词
Key words: Mean; median; L1-norm; L2-norm; multivariate location;
D O I
暂无
中图分类号
学科分类号
摘要
The center of a univariate data set {x1,…,xn} can be defined as the point μ that minimizes the norm of the vector of distances y′=(|x1−μ|,…,|xn−μ|). As the median and the mean are the minimizers of respectively the L1- and the L2-norm of y, they are two alternatives to describe the center of a univariate data set. The center μ of a multivariate data set {x1,…,xn} can also be defined as minimizer of the norm of a vector of distances. In multivariate situations however, there are several kinds of distances. In this note, we consider the vector of L1-distances y′1=(∥x1- μ∥1,…,∥xn- μ∥1) and the vector of L2-distances y′2=(∥x1- μ∥2,…,∥xn-μ∥2). We define the L1-median and the L1-mean as the minimizers of respectively the L1- and the L2-norm of y1; and then the L2-median and the L2-mean as the minimizers of respectively the L1- and the L2-norm of y2. In doing so, we obtain four alternatives to describe the center of a multivariate data set. While three of them have been already investigated in the statistical literature, the L1-mean appears to be a new concept.
引用
收藏
页码:127 / 134
页数:7
相关论文
共 50 条
  • [1] Multivariate L1 mean
    Dodge, Y
    Rousson, V
    METRIKA, 1999, 49 (02) : 127 - 134
  • [2] On l1 Mean and Variance Filtering
    Wahlberg, Bo
    Rojas, Cristian R.
    Annergren, Mariette
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1913 - 1916
  • [3] Multivariate L1 Methods: The Package MNM
    Nordhausen, Klaus
    Oja, Hannu
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 43 (05): : 1 - 28
  • [4] On the geometry of multivariate L1 objective functions
    Gleb A. Koshevoy
    Jyrki Möttönen
    Hannu Oja*
    Allgemeines Statistisches Archiv, 2004, 88 (2): : 137 - 154
  • [5] MEAN CONVERGENCE AND COMPACT SUBSETS OF L1
    HALPERN, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 28 (01) : 122 - +
  • [6] ON L1 NORM AND MEAN VALUE OF A TRIGONOMETRIC SERIES
    KURTZ, LC
    SHAH, SM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (05) : 1023 - &
  • [7] IsometricandAlmostIsometricOperatorsofB(L1→L1)
    定光桂
    ActaMathematicaSinica, 1985, (02) : 126 - 140
  • [8] L1 SUBSPACES OF L1
    ZIPPIN, M
    ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (02) : 110 - 117
  • [9] l∞(l1) and l1(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 295 - 297
  • [10] Accurate Changing Point Detection for l1 Mean Filtering
    Ottersten, Johan
    Wahlberg, Bo
    Rojas, Cristian R.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (02) : 297 - 301