Generalized Killing spinors on spheres

被引:0
|
作者
Andrei Moroianu
Uwe Semmelmann
机构
[1] Université de Versailles-St Quentin,Laboratoire de Mathématiques
[2] UMR 8100 du CNRS,Fachbereich Mathematik, Institut für Geometrie und Topologie
[3] Universität Stuttgart,undefined
来源
关键词
Generalized Killing spinors; Parallel spinors; Primary: 53C25; 53C27; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We study generalized Killing spinors on round spheres Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^n$$\end{document}. We show that on the standard sphere S8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^8$$\end{document} any generalized Killing spinor has to be an ordinary Killing spinor. Moreover, we classify generalized Killing spinors on Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^n$$\end{document} whose associated symmetric endomorphism has at most two eigenvalues and recover in particular Agricola–Friedrich’s canonical spinor on 3-Sasakian manifolds of dimension 7. Finally, we show that it is not possible to deform Killing spinors on standard spheres into genuine generalized Killing spinors.
引用
收藏
页码:129 / 143
页数:14
相关论文
共 50 条