We study generalized Killing spinors on round spheres Sn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {S}^n$$\end{document}. We show that on the standard sphere S8\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {S}^8$$\end{document} any generalized Killing spinor has to be an ordinary Killing spinor. Moreover, we classify generalized Killing spinors on Sn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {S}^n$$\end{document} whose associated symmetric endomorphism has at most two eigenvalues and recover in particular Agricola–Friedrich’s canonical spinor on 3-Sasakian manifolds of dimension 7. Finally, we show that it is not possible to deform Killing spinors on standard spheres into genuine generalized Killing spinors.
机构:
Versailles St Quentin, Math Lab, CNRS, UMR 8100, F-78035 Versailles, FranceVersailles St Quentin, Math Lab, CNRS, UMR 8100, F-78035 Versailles, France
机构:
Univ Versailles St Quentin, Lab Mathemat, CNRS, UMR 8100, F-78035 Versailles, FranceUniv Versailles St Quentin, Lab Mathemat, CNRS, UMR 8100, F-78035 Versailles, France