On Weil’s explicit formula

被引:0
|
作者
Xian-Jin Li
机构
[1] Brigham Young University,Department of Mathematics
来源
Science China Mathematics | 2015年 / 58卷
关键词
global trace formula; nuclear locally convex space; Riemann hypothesis; 46A03; 11M26;
D O I
暂无
中图分类号
学科分类号
摘要
A program of proving the Riemann hypothesis by using the Fourier analysis on global fields is given by Connes (1999). The difficulty for realizing the program lies in proving the validity of Connes’ global trace formula on an L2-space. In this paper, a new global trace formula is obtained on a Fréchet space which gives the Weil distribution Δ(h).
引用
收藏
页码:915 / 982
页数:67
相关论文
共 50 条
  • [1] On Weil's explicit formula
    Li Xian-Jin
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (05) : 915 - 982
  • [2] On Weil's explicit formula
    LI Xian-Jin
    Science China Mathematics, 2015, (05) : 915 - 982
  • [3] A note on Weil's explicit formula
    Avdispahic, Muharem
    Smajlovic, Lejla
    P-ADIC MATHEMATICAL PHYSICS, 2006, 826 : 312 - +
  • [4] ON WEIL,A. EXPLICIT FORMULA
    BARNER, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1981, 323 : 139 - 152
  • [5] Two applications of Weil-Serre's explicit formula
    Vladut, SG
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (04) : 279 - 288
  • [6] An attempt to interpret the Weil explicit formula from Beurling's spectral theory
    Kamiya, Yuichi
    Suzuki, Masatoshi
    JOURNAL OF NUMBER THEORY, 2011, 131 (04) : 685 - 704
  • [7] Some applications of the Weil-Barner explicit formula
    Buethe, J.
    Franke, Jens
    Jost, Alexander
    Kleinjung, Thorsten
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) : 536 - 549
  • [8] ON THE SIEGEL-WEIL FORMULA
    REITER, H
    MONATSHEFTE FUR MATHEMATIK, 1993, 116 (3-4): : 299 - 330
  • [9] ON THE WEIL-SIEGEL FORMULA
    KUDLA, SS
    RALLIS, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 387 : 1 - 68
  • [10] On Popov's Explicit Formula and the Davenport Expansion
    Yang, Quan
    Mehta, Jay
    Kanemitsu, Shigeru
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 869 - 883