共 50 条
Bayesian reverse-engineering considered as a research strategy for cognitive science
被引:0
|作者:
Carlos Zednik
Frank Jäkel
机构:
[1] Otto-von-Guericke-Universität Magdeburg,Institut III
[2] Universität Osnabrück, Philosophie
来源:
关键词:
Probabilistic modeling;
Rational analysis;
Ideal observers;
Reverse-engineering;
Levels of analysis;
Scientific explanation;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and are often deployed unsystematically, Bayesian reverse-engineering avoids several important worries that have been raised about the explanatory credentials of Bayesian cognitive science: the worry that the lower levels of analysis are being ignored altogether; the challenge that the mathematical models being developed are unfalsifiable; and the charge that the terms ‘optimal’ and ‘rational’ have lost their customary normative force. But while Bayesian reverse-engineering is therefore a viable and productive research strategy, it is also no fool-proof recipe for explanatory success.
引用
收藏
页码:3951 / 3985
页数:34
相关论文