The Scalarization Approach to Multiobjective Markov Control Problems: Why Does It Work?

被引:0
|
作者
Onésimo Hernández-Lerma
Rosario Romera
机构
[1] $Departamento de Matemáticas,
[2] CINVESTAV-IPN,undefined
[3] A. Postal 14-740,undefined
[4] México D.F. 07000,undefined
[5] Departamento de Mathemáticas,undefined
[6] Universidad Carlos III of Madrid,undefined
[7] Calle Madrid 126,undefined
[8] 28903 Getafe,undefined
[9] Madrid,undefined
来源
关键词
Markov control processes; Multiobjective control problems; Pareto optimality; Infinite-dimensional multiobjective linear programming;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns discrete-time multiobjective Markov control processes on Borel spaces and unbounded costs. Under mild assumptions, it is shown that the usual “scalarization approach” to obtain Pareto policies for the multiobjective control problem is in fact equivalent to solving the dual of a certain multiobjective infinite-dimensional linear program. The latter program is obtained from a multiobjective measure problem which is also used to prove the existence of strong Pareto policies, that is, Pareto policies whose cost vector is the closest to the control problem’s virtual minimum.
引用
收藏
页码:279 / 293
页数:14
相关论文
共 50 条
  • [1] The scalarization approach to multiobjective Markov control problems:: Why does it work?
    Hernández-Lerma, O
    Romera, R
    APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 50 (03): : 279 - 293
  • [2] Scalarization of Multiobjective Robust Optimization Problems
    Khoshkhabar-amiranloo S.
    Operations Research Forum, 2 (3)
  • [3] The modified objective-constraint scalarization approach for multiobjective optimization problems
    Hoseinpoor, Narges
    Ghaznavi, Mehrdad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05): : 1403 - 1418
  • [4] Solving multiobjective optimal control problems using an improved scalarization method
    Askarirobati, Gholam Hosein
    Borzabadi, Akbar Hashemi
    Heydari, Aghileh
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) : 1524 - 1547
  • [5] Solving multiobjective optimal control problems using an improved scalarization method
    Askarirobati G.H.
    Borzabadi A.H.
    Heydari A.
    IMA Journal of Mathematical Control and Information, 2020, 37 (04): : 1524 - 1547
  • [6] Parallel Implementation of Desirability Function-Based Scalarization Approach for Multiobjective Optimization Problems
    Altinoz, O. Tolga
    Akca, Eren
    Yilmaz, A. Egemen
    Duca, Anton
    Ciuprina, Gabriela
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2015, 39 (02): : 115 - 123
  • [7] An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization
    L. F. Bueno
    G. Haeser
    J. M. Martínez
    Optimization Letters, 2016, 10 : 1315 - 1325
  • [8] An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization
    Bueno, L. F.
    Haeser, G.
    Martinez, J. M.
    OPTIMIZATION LETTERS, 2016, 10 (06) : 1315 - 1325
  • [9] Solutions of Fuzzy Multiobjective Programming Problems Based on the Concept of Scalarization
    H. C. Wu
    Journal of Optimization Theory and Applications, 2008, 139
  • [10] Stability achievement scalarization function for multiobjective nonlinear programming problems
    Kassem, Mohamed Abd El-Hady
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (06) : 1044 - 1055