Predicting multiple sclerosis severity with multimodal deep neural networks

被引:0
|
作者
Kai Zhang
John A. Lincoln
Xiaoqian Jiang
Elmer V. Bernstam
Shayan Shams
机构
[1] University of Texas Health Sciences Center at Houston,Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics
[2] University of Texas Health Sciences Center,Department of Neurology
[3] McGovern Medical School,Division of General Internal Medicine, Department of Internal Medicine
[4] University of Texas Health Sciences Center,Department of Applied Data Science
[5] McGovern Medical School,undefined
[6] San Jose State University,undefined
关键词
Multimodal deep learning; Multiple sclerosis; Expanded disability status scale;
D O I
暂无
中图分类号
学科分类号
摘要
Multiple Sclerosis (MS) is a chronic disease developed in the human brain and spinal cord, which can cause permanent damage or deterioration of the nerves. The severity of MS disease is monitored by the Expanded Disability Status Scale, composed of several functional sub-scores. Early and accurate classification of MS disease severity is critical for slowing down or preventing disease progression via applying early therapeutic intervention strategies. Recent advances in deep learning and the wide use of Electronic Health Records (EHR) create opportunities to apply data-driven and predictive modeling tools for this goal. Previous studies focusing on using single-modal machine learning and deep learning algorithms were limited in terms of prediction accuracy due to data insufficiency or model simplicity. In this paper, we proposed the idea of using patients’ multimodal longitudinal and longitudinal EHR data to predict multiple sclerosis disease severity in the future. Our contribution has two main facets. First, we describe a pioneering effort to integrate structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient’s MS severity. The proposed pipeline demonstrates up to 19% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data. Second, the study also provides valuable insights regarding the amount useful signal embedded in each data modality with respect to MS disease prediction, which may improve data collection processes.
引用
收藏
相关论文
共 50 条
  • [1] Predicting multiple sclerosis severity with multimodal deep neural networks
    Zhang, Kai
    Lincoln, John A.
    Jiang, Xiaoqian
    Bernstam, Elmer V.
    Shams, Shayan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [2] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Magi Andorra
    Ana Freire
    Irati Zubizarreta
    Nicole Kerlero de Rosbo
    Steffan D. Bos
    Melanie Rinas
    Einar A. Høgestøl
    Sigrid A. de Rodez Benavent
    Tone Berge
    Synne Brune-Ingebretse
    Federico Ivaldi
    Maria Cellerino
    Matteo Pardini
    Gemma Vila
    Irene Pulido-Valdeolivas
    Elena H. Martinez-Lapiscina
    Sara Llufriu
    Albert Saiz
    Yolanda Blanco
    Eloy Martinez-Heras
    Elisabeth Solana
    Priscilla Bäcker-Koduah
    Janina Behrens
    Joseph Kuchling
    Susanna Asseyer
    Michael Scheel
    Claudia Chien
    Hanna Zimmermann
    Seyedamirhosein Motamedi
    Josef Kauer-Bonin
    Alex Brandt
    Julio Saez-Rodriguez
    Leonidas G. Alexopoulos
    Friedemann Paul
    Hanne F. Harbo
    Hengameh Shams
    Jorge Oksenberg
    Antonio Uccelli
    Ricardo Baeza-Yates
    Pablo Villoslada
    Journal of Neurology, 2024, 271 : 1133 - 1149
  • [3] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Andorra, Magi
    Freire, Ana
    Zubizarreta, Irati
    de Rosbo, Nicole Kerlero
    Bos, Steffan D.
    Rinas, Melanie
    Hogestol, Einar A.
    Benavent, Sigrid A. de Rodez
    Berge, Tone
    Brune-Ingebretse, Synne
    Ivaldi, Federico
    Cellerino, Maria
    Pardini, Matteo
    Vila, Gemma
    Pulido-Valdeolivas, Irene
    Martinez-Lapiscina, Elena H.
    Llufriu, Sara
    Saiz, Albert
    Blanco, Yolanda
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Baecker-Koduah, Priscilla
    Behrens, Janina
    Kuchling, Joseph
    Asseyer, Susanna
    Scheel, Michael
    Chien, Claudia
    Zimmermann, Hanna
    Motamedi, Seyedamirhosein
    Kauer-Bonin, Josef
    Brandt, Alex
    Saez-Rodriguez, Julio
    Alexopoulos, Leonidas G.
    Paul, Friedemann
    Harbo, Hanne F.
    Shams, Hengameh
    Oksenberg, Jorge
    Uccelli, Antonio
    Baeza-Yates, Ricardo
    Villoslada, Pablo
    JOURNAL OF NEUROLOGY, 2024, 271 (03) : 1133 - 1149
  • [4] Deep Neural Net Forecasting of Multiple Sclerosis Disease Severity
    Insley, Benjamin
    Rizvi, Syed
    Cahill, Jonathon
    Stone, Joshua
    Eickhoff, Carsten
    NEUROLOGY, 2019, 92 (15)
  • [5] Explainable AI predicting Alzheimer's Disease with Multimodal Deep Neural Networks
    Chen, Xi
    Hu, Jinxiang
    QUALITY OF LIFE RESEARCH, 2024, 33 : S1 - S1
  • [6] Multimodal detection of epilepsy with deep neural networks
    Ilias, Loukas
    Askounis, Dimitris
    Psarras, John
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [7] Superiority of serum NFL in predicting Multiple Sclerosis severity
    Kosa, P.
    Masvekar, R. R.
    Komori, M.
    Phillips, J.
    Ramesh, V.
    Varosanec, M.
    Sandford, M.
    Bielekova, B.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (1_SUPPL) : 48 - 49
  • [8] Genes and outcomes in multiple sclerosis: predicting disease severity
    Ebers, George
    MULTIPLE SCLEROSIS, 2008, 14 : S19 - S19
  • [9] Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
    Richard McKinley
    Rik Wepfer
    Fabian Aschwanden
    Lorenz Grunder
    Raphaela Muri
    Christian Rummel
    Rajeev Verma
    Christian Weisstanner
    Mauricio Reyes
    Anke Salmen
    Andrew Chan
    Franca Wagner
    Roland Wiest
    Scientific Reports, 11
  • [10] Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
    McKinley, Richard
    Wepfer, Rik
    Aschwanden, Fabian
    Grunder, Lorenz
    Muri, Raphaela
    Rummel, Christian
    Verma, Rajeev
    Weisstanner, Christian
    Reyes, Mauricio
    Salmen, Anke
    Chan, Andrew
    Wagner, Franca
    Wiest, Roland
    SCIENTIFIC REPORTS, 2021, 11 (01)