Sonic–supersonic solutions to a degenerate Cauchy–Goursat problem for 2D relativistic Euler equations

被引:0
|
作者
Yongqiang Fan
Lihui Guo
Yanbo Hu
Shouke You
机构
[1] Xinjiang University,College of Mathematics and System Sciences
[2] Hangzhou Normal University,Department of Mathematics
关键词
Relativistic Euler equations; Characteristic decomposition; Degenerate Cauchy–Goursat problem; Sonic–supersonic solutions; 35L65; 35L67; 76N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the degenerate Cauchy–Goursat problem for 2D steady isentropic relativistic Euler equations. Prescribing the sonic curve and a positive characteristic curve as boundaries, the existence and uniqueness of sonic–supersonic solution in an angular region are obtained. Employing the characteristic decomposition of angle variables, 2D relativistic Euler equations are transformed into the first-order hyperbolic equations. In the partial hodograph plane, introducing the change variables W¯=1W,Z¯=-1Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{W}=\frac{1}{W},\overline{Z}=\frac{-1}{Z}$$\end{document}, associated with the iterative method in Li, Hu (2019) yields a linear equations and the existence and uniqueness of the smooth sonic–supersonic solutions are established. Finally, we return the solution in the partial hodograph plane to that in the original physical variables.
引用
收藏
相关论文
共 50 条
  • [1] Sonic-supersonic solutions to a degenerate Cauchy-Goursat problem for 2D relativistic Euler equations
    Fan, Yongqiang
    Guo, Lihui
    Hu, Yanbo
    You, Shouke
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [2] THE REGULARITY OF A DEGENERATE GOURSAT PROBLEM FOR THE 2-D ISOTHERMAL EULER EQUATIONS
    Hu, Yanbo
    Li, Tong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (06) : 3317 - 3336
  • [3] Sonic-supersonic solutions for the two dimensional steady relativistic Euler equations
    Fan, Yongqiang
    Guo, Lihui
    Hu, Yanbo
    You, Shouke
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [4] Sonic-Supersonic Solutions for the Steady Euler Equations
    Zhang, Tianyou
    Zheng, Yuxi
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (06) : 1785 - 1817
  • [5] Degenerate Cauchy-Goursat problem for 2-D steady isentropic Euler system with van der Waals gas
    Srivastava, H.
    Zafar, M.
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (04) : 1525 - 1549
  • [6] Renormalized Solutions of the 2D Euler Equations
    Gianluca Crippa
    Stefano Spirito
    Communications in Mathematical Physics, 2015, 339 : 191 - 198
  • [7] Renormalized Solutions of the 2D Euler Equations
    Crippa, Gianluca
    Spirito, Stefano
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 191 - 198
  • [8] Strong solutions to the 2D Cauchy problem of nonhomogeneous magnetohydrodynamic equations with vacuum
    Lue, Boqiang
    Wang, Xiang
    Zhong, Xin
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (10)
  • [9] Conical Sonic-Supersonic Solutions for the 3-D Steady Full Euler Equations
    Hu, Yanbo
    Li, Xingxing
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (03) : 1053 - 1096
  • [10] Conical Sonic-Supersonic Solutions for the 3-D Steady Full Euler Equations
    Yanbo Hu
    Xingxing Li
    Communications on Applied Mathematics and Computation, 2023, 5 : 1053 - 1096