We study the existence of positive solutions of the nonlinear elliptic problem \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\frac{1}{2}\Delta u - f(u) \cdot \mu + g(u) \cdot \sigma = 0$$
\end{document} in D with u=0 on ∂D, where μ and σ are two Randon's measures belonging to a Kato subclass and D is an unbounded smouth domain in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{R}$$
\end{document}d(d≥3). When g is superlinear at 0 and 0≤f(t)≤t for t∈(0,b), then probabilistic methods and fixed point argument are used to prove the existence of infinitely many bounded continuous solutions of this problem.
机构:
Department of Civil Engineering, Università di Salerno, Fisciano, 84084, SalernoDepartment of Civil Engineering, Università di Salerno, Fisciano, 84084, Salerno