Multi-view Multi-label Learning with Incomplete Views and Labels

被引:0
|
作者
Changming Zhu
Lin Ma
机构
[1] Shanghai Maritime University,College of Information Engineering
关键词
Incomplete views and labels; Label-specific features; Multi-view Multi-label; Label correlation;
D O I
10.1007/s42979-021-00957-2
中图分类号
学科分类号
摘要
Data set with incomplete information, multi-granularity label correlation when label-specific features and complementarity information provided is ubiquitous in real-world applications. In this paper, we develop a new multi-view multi-label learning with incomplete views and labels (MVML-IVL) for solution and it is the first attempt to design a multi-view multi-label learning method with incomplete views and labels by the learning of label-specific features, label correlation matrix, low-rank assumption matrix, multi-granularity label correlation, and complementary information. Experimental results validate that (1) MVML-IVL achieves a better performance and it is superior to the classical multi-view (multi-label) learning methods in statistical; (2) the running time of MVML-IVL won’t add too much; (3) MVML-IVL has a good convergence and ability to process multi-view multi-label data sets; (4) multi-granularity label correlation plays an important role for the performance of MVML-IVL; (5) the influence of adjustable parameters is not too large.
引用
收藏
相关论文
共 50 条
  • [1] Global and local multi-view multi-label learning with incomplete views and labels
    Changming Zhu
    Panhong Wang
    Lin Ma
    Rigui Zhou
    Lai Wei
    Neural Computing and Applications, 2020, 32 : 15007 - 15028
  • [2] Global and local multi-view multi-label learning with incomplete views and labels
    Zhu, Changming
    Wang, Panhong
    Ma, Lin
    Zhou, Rigui
    Wei, Lai
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 15007 - 15028
  • [3] Deep Double Incomplete Multi-View Multi-Label Learning With Incomplete Labels and Missing Views
    Wen, Jie
    Liu, Chengliang
    Deng, Shijie
    Liu, Yicheng
    Fei, Lunke
    Yan, Ke
    Xu, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11396 - 11408
  • [4] Incomplete Multi-view Multi-label Active Learning
    Qu, Chuanwei
    Wang, Kuangmeng
    Zhang, Hong
    Yu, Guoxian
    Domeniconi, Carlotta
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1294 - 1299
  • [5] Incomplete multi-view partial multi-label learning
    Liu, Xinyuan
    Sun, Lijuan
    Feng, Songhe
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3289 - 3302
  • [6] Incomplete multi-view partial multi-label learning
    Xinyuan Liu
    Lijuan Sun
    Songhe Feng
    Applied Intelligence, 2022, 52 : 3289 - 3302
  • [7] Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
    He, Zhi-Fen
    Zhang, Chun-Hua
    Liu, Bin
    Li, Bo
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9444 - 9462
  • [8] Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
    Zhi-Fen He
    Chun-Hua Zhang
    Bin Liu
    Bo Li
    Applied Intelligence, 2023, 53 : 9444 - 9462
  • [9] Robust Mapping Learning for Multi-view Multi-label Classification with Missing Labels
    Ren, Weijieying
    Zhang, Lei
    Jiang, Bo
    Wang, Zhefeng
    Guo, Guangming
    Liu, Guiquan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS, 2017, 10412 : 543 - 551
  • [10] Multi-View Learning With Incomplete Views
    Xu, Chang
    Tao, Dacheng
    Xu, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5812 - 5825