Gaussian variational approximation with sparse precision matrices

被引:0
|
作者
Linda S. L. Tan
David J. Nott
机构
[1] National University of Singapore,Department of Statistics and Applied Probability
[2] National University of Singapore,Operations Research and Analytics Cluster
来源
Statistics and Computing | 2018年 / 28卷
关键词
Gaussian variational approximation; Stochastic gradient algorithms; Sparse precision matrix; Variational Bayes;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of learning a Gaussian variational approximation to the posterior distribution for a high-dimensional parameter, where we impose sparsity in the precision matrix to reflect appropriate conditional independence structure in the model. Incorporating sparsity in the precision matrix allows the Gaussian variational distribution to be both flexible and parsimonious, and the sparsity is achieved through parameterization in terms of the Cholesky factor. Efficient stochastic gradient methods that make appropriate use of gradient information for the target distribution are developed for the optimization. We consider alternative estimators of the stochastic gradients, which have lower variation and are more stable. Our approach is illustrated using generalized linear mixed models and state-space models for time series.
引用
收藏
页码:259 / 275
页数:16
相关论文
共 50 条
  • [1] Gaussian variational approximation with sparse precision matrices
    Tan, Linda S. L.
    Nott, David J.
    STATISTICS AND COMPUTING, 2018, 28 (02) : 259 - 275
  • [2] Variational Bayesian approximation of inverse problems using sparse precision matrices
    Povala, Jan
    Kazlauskaite, Ieva
    Febrianto, Eky
    Cirak, Fehmi
    Girolami, Mark
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [3] Sparse Approximation of the Precision Matrices for the Wide-Swath Altimeters
    Yaremchuk, Max
    REMOTE SENSING, 2022, 14 (12)
  • [4] Bayesian estimation of sparse precision matrices in the presence of Gaussian measurement error
    Shi, Wenli
    Ghosal, Subhashis
    Martin, Ryan
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4545 - 4579
  • [5] The Variational Gaussian Approximation Revisited
    Opper, Manfred
    Archambeau, Cedric
    NEURAL COMPUTATION, 2009, 21 (03) : 786 - 792
  • [6] ON THE APPROXIMATION ACCURACY OF GAUSSIAN VARIATIONAL
    Katsevich, Anya
    Rigollet, Philippe
    ANNALS OF STATISTICS, 2024, 52 (04): : 1384 - 1409
  • [7] Estimating sparse precision matrices
    Padmanabhan, Nikhil
    White, Martin
    Zhou, Harrison H.
    O'Connell, Ross
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) : 1567 - 1576
  • [8] Explicit Matrices for Sparse Approximation
    Khajehnejad, Amin
    Tehrani, Arash Saber
    Dimakis, Alexandros G.
    Hassibi, Babak
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 469 - 473
  • [9] Doubly Sparse Variational Gaussian Processes
    Adam, Vincent
    Eleftheriadis, Stefanos
    Durrande, Nicolas
    Artemev, Artem
    Hensman, James
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2874 - 2883
  • [10] Multiview Variational Sparse Gaussian Processes
    Mao, Liang
    Sun, Shiliang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (07) : 2875 - 2885