Factorizations and Hardy’s type identities and inequalities on upper half spaces

被引:0
|
作者
Nguyen Lam
Guozhen Lu
Lu Zhang
机构
[1] Memorial University of Newfoundland,School of Science & Environment, Grenfell Campus
[2] University of British Columbia and The Pacific Institute for the Mathematical Sciences,Department of Mathematics
[3] University of Connecticut,Department of Mathematics
[4] Shaanxi Normal University,School of Mathematics and Information Sciences
[5] Binghamton University,Department of Mathematical Sciences
关键词
26D10; 46E35; 35A23;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated and inspired by the improved Hardy inequalities studied in their well-known works by Brezis and Vázquez (Rev Mat Univ Complut Madrid 10:443–469, 1997) and Brezis and Marcus (Ann Scuola Norm Sup Pisa Cl Sci 25(1–2):217–237, 1997), we establish in this paper several identities that imply many sharpened forms of the Hardy type inequalities on upper half spaces xN>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ x_{N}>0\right\} $$\end{document}. We set up these results for the distance to the origin, the distance to the boundary of any strip RN-1×0,R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {R} ^{N-1}\times \left( 0,R\right) $$\end{document} and the distance to the hyperplane xN=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ x_{N}=0\right\} $$\end{document}, using both the usual full gradient and radial derivative (in the case of distance to the origin) or only the partial derivative ∂u∂xN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial x_{N}}$$\end{document} (in the case of distance to the boundary of the strip or hyperplane). One of the applications of our main results is that when Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is the strip RN-1×0,2R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N-1}\times \left( 0,2R\right) $$\end{document}, the bound λΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \left( \Omega \right) $$\end{document} given by Brezis and Marcus in Brezis and Marcus (1997) can be improved to z02R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{z_{0}^{2}}{R^{2}}$$\end{document}, where z0=2.4048…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{0} =2.4048 \ldots $$\end{document} is the first zero of the Bessel function J0z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{0}\left( z\right) $$\end{document}. Our approach makes use of the notion of Bessel pairs introduced by Ghoussoub and Moradifam (Math Ann 349(1):1–57, 2011) and (Functional inequalities: new perspectives and new applications. Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2013) and the method of factorizations of differential operators. In particular, our identities and inequalities offer sharpened and more precise estimates of the second remainder term in the existing Hardy type inequalities on upper half spaces in the literature, including the Hardy-Sobolev-Maz’ya type inequalities.
引用
收藏
相关论文
共 50 条
  • [1] Factorizations and Hardy's type identities and inequalities on upper half spaces
    Lam, Nguyen
    Lu, Guozhen
    Zhang, Lu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
  • [2] SOME HARDY INEQUALITIES ON HALF SPACES FOR GRUSHIN TYPE OPERATORS
    Xiao, Ying-Xiong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 793 - 807
  • [3] Factorizations and Hardy-Rellich-type inequalities
    Gesztesy, Fritz
    Littlejohn, Lance
    NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS, MATHEMATICAL PHYSICS, AND STOCHASTIC ANALYSIS: THE HELGE HOLDEN ANNIVERSARY VOLME, 2018, : 207 - 226
  • [4] Some Hardy identities on half-spaces
    Duy, Nguyen Tuan
    Lam, Nguyen
    Phi, Le Long
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2317 - 2328
  • [5] Hardy type identities and inequalities with divergence type operators on smooth metric measure spaces
    Wang, Pengyan
    Wang, Jiahao
    AIMS MATHEMATICS, 2024, 9 (06): : 16354 - 16375
  • [6] CYLINDRICAL HARDY INEQUALITIES ON HALF-SPACES
    Nguyen Tuan Duy
    Huy Bac Nguyen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [7] Hardy inequalities in half spaces of the Heisenberg group
    Han, Junqiang
    Niu, Pengcheng
    Qin, Wenji
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 405 - 417
  • [8] Factorizations of Weighted Hardy Inequalities
    Barza, Sorina
    Marcoci, Anca N.
    Marcoci, Liviu G.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (04): : 915 - 932
  • [9] Factorizations of Weighted Hardy Inequalities
    Sorina Barza
    Anca N. Marcoci
    Liviu G. Marcoci
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 915 - 932
  • [10] Subelliptic geometric Hardy type inequalities on half-spaces and convex domains
    Michael Ruzhansky
    Bolys Sabitbek
    Durvudkhan Suragan
    Annals of Functional Analysis, 2020, 11 : 1042 - 1061