On the Spectrum of the Schrödinger Operator with Periodic Surface Potential

被引:0
|
作者
Ayham Chahrour
机构
[1] Université Paris 7-Denis Diderot,Institut de Mathématiques de Jussieu, CNRS UMR 7586, Physique mathématique et Géométrie
[2] U.F.R. de Mathématiques,undefined
来源
关键词
Schrödinger operator; periodic potential; surface potential;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a discrete Schrödinger operator H=−Δ+V acting in l2(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}$$ \end{document}d), with periodic potential V supported by the subspace ‘surface’ {0}×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}$$ \end{document}d2. We prove that the spectrum of H is purely absolutely continuous, and that surface waves oscillate in the longitudinal directions to the ‘surface’. We also find an explicit formula for the generalized spectral shift function introduced by the author in Helv. Phys. Acta.72 (1999), 93–122.
引用
收藏
页码:197 / 209
页数:12
相关论文
共 50 条