A New Stabilization Method for the Elasticity Problem

被引:0
|
作者
Dong-yang Shi
Ming-hao Li
Chao Xu
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Tongji University,School of Aerospace Engineering and Applied Mechanics
[3] Luoyang Institute of Science and Technology,Department of Mathematics and Physics
来源
关键词
Elasticity; Weaker inf-sup condition; Optimally consistent stabilization; Error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the elasticity problem based on the Hellinger–Reissner variational principle. We use the C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document} continuous arbitrary degree polynomial mixed finite element spaces to approximate the stress and displacement, and develop a new stabilization method for the finite element space pairs to overcome the lack of the inf-sup condition, then we give the corresponding error estimates of the stabilization approximation scheme. At last, we implement a numerical example to test the stability and effectiveness of the proposed method.
引用
收藏
页码:1025 / 1038
页数:13
相关论文
共 50 条
  • [1] A New Stabilization Method for the Elasticity Problem
    Shi, Dong-yang
    Li, Ming-hao
    Xu, Chao
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1025 - 1038
  • [2] New Residual Based Stabilization Method for the Elasticity Problem
    Li, Minghao
    Shi, Dongyang
    Dai, Ying
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (01) : 100 - 113
  • [3] Nonlinear boundary stabilization for a transmission problem in elasticity
    Oquendo, HP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) : 1331 - 1345
  • [4] Viscoelastic boundary stabilization for a transmission problem in elasticity
    Oquendo, HP
    IMA JOURNAL OF APPLIED MATHEMATICS, 2003, 68 (01) : 83 - 97
  • [5] A new type of full multigrid method for the elasticity eigenvalue problem
    Xu, Fei
    Huang, Qiumei
    Ma, Hongkun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 444 - 461
  • [6] The Brezzi-Pitkaranta stabilization scheme for the elasticity problem
    Li, Minghao
    Shi, Dongyang
    Dai, Ying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 286 : 7 - 16
  • [7] Uniform stabilization of an electromagnetic-elasticity problem in exterior domains
    Ferreira, Marcio V.
    Menzala, Gustavo Perla
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 18 (04) : 719 - 746
  • [8] A wavelets method for plane elasticity problem
    Li, Song-Hua
    Sun, Ming-Bao
    Xian, Jun
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 3035 - 3043
  • [9] New Statement of the elasticity problem for a layer
    V. I. Gorbachev
    L. L. Firsov
    Mechanics of Solids, 2011, 46
  • [10] On a new problem at the limits of the theory of elasticity
    Muschelisvili, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1934, 4 : 141 - 144