In this paper, we consider the elasticity problem based on the Hellinger–Reissner variational principle. We use the C0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^0$$\end{document} continuous arbitrary degree polynomial mixed finite element spaces to approximate the stress and displacement, and develop a new stabilization method for the finite element space pairs to overcome the lack of the inf-sup condition, then we give the corresponding error estimates of the stabilization approximation scheme. At last, we implement a numerical example to test the stability and effectiveness of the proposed method.
机构:
Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing, Peoples R ChinaBeijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing, Peoples R China
Xu, Fei
Huang, Qiumei
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing, Peoples R ChinaBeijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing, Peoples R China
Huang, Qiumei
Ma, Hongkun
论文数: 0引用数: 0
h-index: 0
机构:
Zhuhai Huafa Investment Holdings Co Ltd, Zhuhai, Peoples R China
Sun Yat Sen Univ, Business Sch, Guangzhou, Guangdong, Peoples R ChinaBeijing Univ Technol, Beijing Inst Sci & Engn Comp, Fac Sci, Beijing, Peoples R China