Umbilical points on three dimensional strictly pseudoconvex CR manifolds I: manifolds with U(1)-action

被引:0
|
作者
Peter Ebenfelt
Duong Ngoc Son
机构
[1] University of California at San Diego,Department of Mathematics
[2] Texas A&M University at Qatar,undefined
[3] Science Program,undefined
来源
Mathematische Annalen | 2017年 / 368卷
关键词
32V05; 30F45;
D O I
暂无
中图分类号
学科分类号
摘要
The question of existence of umbilical points, in the CR sense, on compact, three dimensional, strictly pseudoconvex CR manifolds was raised in the seminal paper by Chern and Moser (Acta Math 133:219–271, 1974). In the present paper, we consider compact, three dimensional, strictly pseudoconvex CR manifolds that possess a free, transverse action by the circle group U(1). We show that every such CR manifold M has at least one orbit of umbilical points, provided that the Riemann surface X:=M/U(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X:=M/U(1)$$\end{document} is not a torus. In particular, every compact, circular and strictly pseudoconvex hypersurface in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C^2$$\end{document} has at least one circle of umbilical points. The existence of umbilical points in the case where X is a torus is left open in general, but it is shown that if such an M has additional symmetries, in a certain sense, then it must possess umbilical points as well.
引用
收藏
页码:537 / 560
页数:23
相关论文
共 50 条