Simultaneously improving the activity and thermostability of a new proline 4-hydroxylase by loop grafting and site-directed mutagenesis

被引:0
|
作者
Chao Liu
Jing Zhao
Jiao Liu
Xuan Guo
Deming Rao
Haiping Liu
Ping Zheng
Jibin Sun
Yanhe Ma
机构
[1] Chinese Academy of Sciences,Tianjin Institute of Industrial Biotechnology
[2] University of Chinese Academy of Sciences,Key Laboratory of Systems Microbial Biotechnology
[3] Chinese Academy of Sciences,undefined
来源
关键词
-Proline 4-hydroxylase; Loop grafting; -4-Hydroxy-L-proline; Fed-batch fermentation; Site-directed mutagenesis;
D O I
暂无
中图分类号
学科分类号
摘要
trans-Proline 4-hydroxylases (trans-P4Hs) hydroxylate free L-proline to trans-4-hydroxy-L-proline (trans-4-Hyp) is a valuable chiral synthon for important pharmaceuticals such as carbapenem antibiotics. However, merely few microbial trans-P4Hs have been identified, and trans-4-Hyp fermentations using engineered Escherichia coli strains expressing trans-P4Hs are usually performed at temperatures below 37 °C, which is likely due to poor stability and low activities. In the present study, a new trans-P4H from uncultured bacterium esnapd13 (UbP4H) with potential in the fermentative production of trans-4-Hyp at 37 °C was reported. In order to enhance the activity and thermostability of UbP4H, the replacement of its putative “lid” loop in combination with site-directed mutagenesis was performed. Consequently, four loop hybrids were designed by substituting a loop of UbP4H (A162-K178) with the corresponding sequences of four other known trans-P4Hs, respectively. Among them, UbP4H-Da exhibited a doubled activity when compared to the wild type (81.6 ± 1.9 vs. 40.4 ± 4.6 U/mg) but with reduced thermostability (t1/2, 11 vs. 47 min). Meanwhile, 10 single variants were designed through sequence alignments and folding free energy calculations. Three best point substitutions were respectively combined with UbP4H-Da, resulting in UbP4H-Da-R90G, UbP4H-Da-E112P, and UbP4H-Da-A260P. UbP4H-Da-E112P exhibited a 1.8-fold higher activity (85.2 ± 0.6 vs. 46.6 ± 4.0 U/mg), a 7.6-fold increase in t1/2 (359 vs. 47 min), and a 3 °C rise in Tm (46 vs. 43 °C) when compared to UbP4H. The fed-batch fermentations of trans-4-Hyp at 37 °C using trans-4-Hyp producing chassis cells expressing UbP4H or its variants were evaluated, and a 3.3-fold increase in trans-4-Hyp titer was obtained for UbP4H-Da-E112P (12.9 ± 0.1 vs. 3.9 ± 0.0 g/L for UbP4H). These results demonstrate the potential application of UbP4H-Da-E112P in the industrial production of trans-4-Hyp.
引用
收藏
页码:265 / 277
页数:12
相关论文
共 50 条
  • [1] Simultaneously improving the activity and thermostability of a new proline 4-hydroxylase by loop grafting and site-directed mutagenesis
    Liu, Chao
    Zhao, Jing
    Liu, Jiao
    Guo, Xuan
    Rao, Deming
    Liu, Haiping
    Zheng, Ping
    Sun, Jibin
    Ma, Yanhe
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (01) : 265 - 277
  • [2] Improving the thermostability of feruloyl esterase by DNA shuffling and site-directed mutagenesis
    Li, Jing-Jing
    Pei, Xiao-Qiong
    Zhang, Shuai-Bing
    Wu, Zhong-Liu
    PROCESS BIOCHEMISTRY, 2015, 50 (11) : 1783 - 1787
  • [3] Site-directed mutagenesis of bovine deoxyhypusine hydroxylase at the hinge loop area
    Murtaugh, Megan L.
    Wang, Yinglu
    Smith, Joshua L.
    Soustek, Meghan S.
    Appidi, Vidya
    Huang, Jenq-Kuen
    Wen, Lisa
    FASEB JOURNAL, 2008, 22
  • [4] Improving the thermostability and activity of lipoxygenase from Anabaena sp PCC 7120 by directed evolution and site-directed mutagenesis
    Guo, Fangfang
    Zhang, Chong
    Bie, Xiaomei
    Zhao, Haizhen
    Diao, Hanwen
    Lu, Fengxia
    Lu, Zhaoxin
    JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2014, 107 : 23 - 30
  • [5] Improvement of the thermostability and enzymatic activity of cholesterol oxidase by site-directed mutagenesis
    Sun, Yan
    Yang, Hailing
    Wang, Wu
    BIOTECHNOLOGY LETTERS, 2011, 33 (10) : 2049 - 2055
  • [6] Improvement of the thermostability and enzymatic activity of cholesterol oxidase by site-directed mutagenesis
    Yan Sun
    Hailing Yang
    Wu Wang
    Biotechnology Letters, 2011, 33 : 2049 - 2055
  • [7] Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis
    Zhen Wei
    Jinling Chen
    Linxiang Xu
    Nannan Liu
    Jie Yang
    Shujun Wang
    AMB Express, 13
  • [8] Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis
    Wei, Zhen
    Chen, Jinling
    Xu, Linxiang
    Liu, Nannan
    Yang, Jie
    Wang, Shujun
    AMB EXPRESS, 2023, 13 (01)
  • [9] Improving the Thermostability and pH Stability of Aspergillus niger Xylanase by Site-directed Mutagenesis
    Q. Li
    T. Wu
    Y. Duan
    J. Pei
    L. Zhao
    Applied Biochemistry and Microbiology, 2019, 55 : 136 - 144
  • [10] Improving the Thermostability and Catalytic Efficiency of Bacillus deramificans Pullulanase by Site-Directed Mutagenesis
    Duan, Xuguo
    Chen, Jian
    Wu, Jing
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (13) : 4072 - 4077