Boundary value problems with sublinear conditions near zero

被引:0
|
作者
Anna Capietto
Walter Dambrosio
机构
[1] Dipartimento di Matematica,
[2] Università di Torino,undefined
[3] Via Carlo Alberto 10,undefined
[4] I-10123 Torino,undefined
[5] Italy,undefined
[6] e-mail: Capietto@dm.unito.it ,undefined
[7] Dipartimento di Matematica,undefined
[8] Università di Torino,undefined
[9] Via Carlo Alberto 10,undefined
[10] I-10123 Torino,undefined
[11] Italy,undefined
[12] e-mail: Dambrosio@dm.unito.it ,undefined
关键词
Key words: Two-point boundary value problem, continuation theorem, time-maps.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a multiplicity result for the two-point boundary value problem associated to a second order equation of the form ¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ u'' + {\cal F}(t, u, u') = 0 $\end{document}¶¶ where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal F} = {\cal F}(t,x,y) $\end{document} satisfies a sublinear condition at x = 0 and no assumption at infinity is required. We use a topological degree method based on a continuation theorem and on the performance of a time-map technique for an autonomous problem.
引用
收藏
页码:149 / 172
页数:23
相关论文
共 50 条