Compatibility conditions for the existence of weak solutions to a singular elliptic equation

被引:0
|
作者
Shuqiang Cong
Yuzhu Han
机构
[1] Jilin University,School of Mathematics
[2] Dalian Nationalities University,College of Science
来源
关键词
compatibility condition; existence; singular; -Laplace;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the existence of positive solutions to the singular elliptic boundary value problem involving p-Laplace operator −div(|∇u|p−2∇u)=h(x)uα+k(x)uβ,x∈Ω;u(x)>0,x∈Ω;u(x)=0,x∈∂Ω;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\operatorname{div}\bigl(|\nabla u|^{p-2}\nabla u\bigr)= \frac{h(x)}{u^{\alpha}}+k(x)u^{\beta},\ x\in\Omega;\ \ u(x)>0,\ x\in\Omega;\ \ u(x)=0,\ x \in \partial\Omega; $$\end{document} where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega\subset\mathbb{R}^{N}$\end{document} (N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\geq1$\end{document}) is a bounded domain with smooth boundary ∂Ω, h∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h\in L^{1}(\Omega)$\end{document}, h(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(x)>0$\end{document} almost everywhere in Ω, k∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\in L^{\infty}(\Omega)$\end{document} is nonnegative, p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>2$\end{document}, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha>1$\end{document} and β∈(0,p−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta\in(0,p-1)$\end{document}. A compatibility condition on the couple (h(x),α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(h(x),\alpha)$\end{document} is given for the problem to have at least one solution. More precisely, it is shown that the problem admits a solution if and only if there exists u0∈H01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{0}\in H_{0}^{1}(\Omega)$\end{document} such that ∫Ωhu01−αdx<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int_{\Omega}hu_{0}^{1-\alpha}\,\mathrm{d}x<\infty$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Compatibility conditions for the existence of weak solutions to a singular elliptic equation
    Cong, Shuqiang
    Han, Yuzhu
    BOUNDARY VALUE PROBLEMS, 2015,
  • [2] Existence and multiplicity of weak solutions for a singular quasilinear elliptic equation
    Huang, Jincheng
    Xiu, Zonghu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (08) : 1450 - 1460
  • [3] Existence and multiplicity of weak solutions for a singular semilinear elliptic equation
    Wen-Shu, Zhou
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) : 107 - 119
  • [4] Existence of Solutions to a Singular Elliptic Equation
    Marcelo Montenegro
    Milan Journal of Mathematics, 2011, 79 : 293 - 301
  • [5] Existence of Solutions to a Singular Elliptic Equation
    Montenegro, Marcelo
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) : 293 - 301
  • [6] Existence of symmetric solutions of a singular elliptic equation
    Jin, Lingyu
    Wang, Xia
    Fang, Shaomei
    Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science Edition), 2009, 30 (03): : 317 - 320
  • [7] Existence of Weak Solutions to a Class of Singular Elliptic Equations
    Qingwei Li
    Wenjie Gao
    Mediterranean Journal of Mathematics, 2016, 13 : 4917 - 4927
  • [8] Existence of Weak Solutions for a Nonlocal Singular Elliptic Problem
    Chaharlang, M. Makvand
    Razani, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2021, 11 (01): : 80 - 91
  • [9] Existence of Weak Solutions to a Class of Singular Elliptic Equations
    Li, Qingwei
    Gao, Wenjie
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4917 - 4927
  • [10] EXISTENCE AND REGULARITY OF WEAK SOLUTIONS FOR SINGULAR ELLIPTIC PROBLEMS
    Bougherara, Brahim
    Giacomoni, Jacques
    Hernandez, Jesus
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, : 19 - 30