Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.)

被引:0
|
作者
Na Chen
Maowen Su
Xiaoyuan Chi
Zhimeng Zhang
Lijuan Pan
Mingna Chen
Tong Wang
Mian Wang
Zhen Yang
Shanlin Yu
机构
[1] Shandong Peanut Research Institute,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute
[2] Qingdao Entry-Exit Inspection and Quarantine Bureau,undefined
[3] Chinese Academy of Agricultural Sciences,undefined
来源
Genes & Genomics | 2016年 / 38卷
关键词
Transcriptome analysis; Microarray; Salt stress; Peanut (; L.);
D O I
暂无
中图分类号
学科分类号
摘要
The cultivated peanut is important oil crop and salt stress seriously influences its development and yield. Tolerant varieties produced using transgenic techniques can effectively increase peanut plantation area and enhance its yields. However, little is known about how gene expression is regulated by salt stress in peanut. In this study, we screened genes regulated by salt stress in peanut roots using microarray technique. In total, 4828 up-regulated and 3752 down-regulated probe sets were successfully identified in peanut roots subjected to 3 and 48 h of salt stress. Data analysis revealed that different response groups existed between the up and down-regulated probe sets. The main up-regulated biological processes involved in salt stress responses included transcription regulation, stress response, and metabolism and biosynthetic processes. The main down-regulated biological processes included transport processes, photosynthesis and development. The Kyoto encyclopedia of genes and genomes pathway analysis indicated that metabolic pathway, biosynthesis of unsaturated fatty acids and plant–pathogen interaction, were mainly up-regulated in peanut under salt stress. However, photosynthesis and phenylalanine metabolism were mainly down-regulated during salt stress. The function of some probe sets in salt stress regulation was not clarified (e.g., protein functioning in cell cycle regulation and xylem development). Many of the genes we identified lacked functional annotations and their roles in response to salt stress are yet to be elucidated. These results identified some candidate genes as potential markers and showed an overview of the transcription map, which may yield some useful insights into salt-mediated signal transduction pathways in peanut.
引用
收藏
页码:493 / 507
页数:14
相关论文
共 50 条
  • [1] Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.)
    Chen, Na
    Su, Maowen
    Chi, Xiaoyuan
    Zhang, Zhimeng
    Pan, Lijuan
    Chen, Mingna
    Wang, Tong
    Wang, Mian
    Yang, Zhen
    Yu, Shanlin
    GENES & GENOMICS, 2016, 38 (06) : 493 - 507
  • [2] Erratum to: Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.)
    Na Chen
    Maowen Su
    Xiaoyuan Chi
    Zhimeng Zhang
    Lijuan Pan
    Mingna Chen
    Tong Wang
    Mian Wang
    Zhen Yang
    Shanlin Yu
    Genes & Genomics, 2016, 38 : 669 - 669
  • [3] Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.) (vol 38, pg 493, 2016)
    Chen, Na
    Su, Maowen
    Chi, Xiaoyuan
    Zhang, Zhimeng
    Pan, Lijuan
    Chen, Mingna
    Wang, Tong
    Wang, Mian
    Yang, Zhen
    Yu, Shanlin
    GENES & GENOMICS, 2016, 38 (07) : 669 - 669
  • [4] Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.)
    Yao, Dongxia
    Zhang, Xueyan
    Zhao, Xinhua
    Liu, Chuanliang
    Wang, Chunchao
    Zhang, Zhenghai
    Zhang, Chaojun
    Wei, Qiang
    Wang, Qianhua
    Yan, Hong
    Li, Fuguang
    Su, Zhen
    GENOMICS, 2011, 98 (01) : 47 - 55
  • [5] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Ruan, Jian
    Guo, Feng
    Wang, Yingying
    Li, Xinguo
    Wan, Shubo
    Shan, Lei
    Peng, Zhenying
    BMC PLANT BIOLOGY, 2018, 18
  • [6] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Jian Ruan
    Feng Guo
    Yingying Wang
    Xinguo Li
    Shubo Wan
    Lei Shan
    Zhenying Peng
    BMC Plant Biology, 18
  • [7] Transcriptome Analysis Reveals Key Molecular Pathways in Response to Alkaline Salt Stress in Canola (Brassica napus L.) Roots
    Weichao Wang
    Jiayin Pang
    Fenghua Zhang
    Lupeng Sun
    Lei Yang
    Tingdong Fu
    Kadambot H. M. Siddique
    Journal of Plant Growth Regulation, 2023, 42 : 3111 - 3127
  • [8] Transcriptome Analysis Reveals Key Molecular Pathways in Response to Alkaline Salt Stress in Canola (Brassica napus L.) Roots
    Wang, Weichao
    Pang, Jiayin
    Zhang, Fenghua
    Sun, Lupeng
    Yang, Lei
    Fu, Tingdong
    Siddique, Kadambot H. M.
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (05) : 3111 - 3127
  • [9] Genetic engineering for salt and drought stress tolerance in peanut (Arachis hypogaea L.)
    Kavi Kishor P.B.
    Venkatesh K.
    Amareshwari P.
    Hima Kumari P.
    Punita D.L.
    Anil Kumar S.
    Roja Rani A.
    Puppala N.
    Indian Journal of Plant Physiology, 2018, 23 (4): : 647 - 652
  • [10] Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress
    Chen, H.
    Liu, N.
    Xu, R.
    Chen, X.
    Zhang, Y.
    Hu, R.
    Lan, X.
    Tang, Z.
    Lin, G.
    PLANT BIOLOGY, 2021, 23 (03) : 517 - 527