On an isoperimetric inequality and various methods for the Bernoulli’s free boundary problems

被引:0
|
作者
Seck D. [1 ]
机构
[1] Laboratoire de Mathématique de la Décision et d’Analyse Numérique, FASEG, Université Cheikh Anta Diop de Dakar, BP 16 889, Dakar-Fann
关键词
Bernoulli’s free boundary problem; Convexity; Eigenvalue; Isoperimetric inequality; Local strict minimum; Shape derivatives; Sufficient conditions; Symmetry;
D O I
10.1007/s40863-015-0012-6
中图分类号
学科分类号
摘要
This survey paper on the Bernoulli’s free boundary problems, deals with some important questions of geometric analysis of optimal shapes. Isoperimetric inequality is discussed and other geometric qualitative properties such as symmetry and convexity properties. A comparison of diffrent approaches to establish existence solution of the Bernoulli’s free boundary problems is done followed by some questions on spectral geometry, the numerical analysis and the analysis on manifolds of the problems studied. © 2015, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:36 / 59
页数:23
相关论文
共 50 条
  • [1] The Isoperimetric Inequality via Approximation Theory and Free Boundary Problems
    Catherine Bénéteau
    Dmitry Khavinson
    Computational Methods and Function Theory, 2006, 6 (2) : 253 - 274
  • [2] THE ISOPERIMETRIC INEQUALITY AND ASSOCIATED BOUNDARY PROBLEMS
    REID, WT
    JOURNAL OF MATHEMATICS AND MECHANICS, 1959, 8 (06): : 897 - 905
  • [3] Fast numerical methods for Bernoulli free boundary problems
    Kuster, Christopher M.
    Gremaud, Pierre A.
    Touzani, Rachid
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (02): : 622 - 634
  • [4] A free boundary problem associated with the isoperimetric inequality
    Artem Abanov
    Catherine Bénéteau
    Dmitry Khavinson
    Razvan Teodorescu
    Journal d'Analyse Mathématique, 2019, 139 : 677 - 696
  • [5] A free boundary problem associated with the isoperimetric inequality
    Abanov, Artem
    Beneteau, Catherine
    Khavinson, Dmitry
    Teodorescu, Razvan
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 677 - 696
  • [6] An isoperimetric inequality related to a Bernoulli problem
    Daners, Daniel
    Kawohl, Bernd
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (3-4) : 547 - 555
  • [7] An isoperimetric inequality related to a Bernoulli problem
    Daniel Daners
    Bernd Kawohl
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 547 - 555
  • [8] Topology optimization in Bernoulli free boundary problems
    Toivanen, Jukka I.
    Makinen, Raino A. E.
    Haslinger, Jaroslav
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 80 (01) : 173 - 188
  • [9] Topology optimization in Bernoulli free boundary problems
    Jukka I. Toivanen
    Raino A. E. Mäkinen
    Jaroslav Haslinger
    Journal of Engineering Mathematics, 2013, 80 : 173 - 188
  • [10] Bernoulli Free-Boundary Problems Introduction
    Shargorodsky, E.
    Toland, J. F.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 196 (914) : 1 - +