An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields

被引:2
|
作者
Madritsch M.G. [1 ,2 ]
Ziegler V. [3 ]
机构
[1] Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy
[2] CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy
[3] Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstr. 69, Linz
来源
Acta Scientiarum Mathematicarum | 2015年 / 81卷 / 1-2期
关键词
Canonical number systems; Diophantine equations; Nagell-Ljunggren equation; Radix representations;
D O I
10.14232/actasm-013-825-5
中图分类号
学科分类号
摘要
Let Χk be a k-th primitive root of unity, m ≥ φ(k)+1 an integer and φk(X) ∈ ℤ[X] the k-th cyclotomic polynomial. In this paper we show that the pair (-m+Χk,N) is a canonical number system, with N = {0, 1, |φk(m)|- 1}. Moreover we also discuss whether the two bases -m+ Χk and -n + Χk are multiplicatively independent for positive integers m, n and k fixed. © Bolyai Institute, University of Szeged.
引用
收藏
页码:33 / 44
页数:11
相关论文
共 50 条