Comparisons of best approximations with Chebyshev expansions for functions with logarithmic endpoint singularities

被引:0
|
作者
Xiaolong Zhang
机构
[1] Hunan Normal University,Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), Key Laboratory of Control and Optimization of Complex Systems (College of Hunan Province), School of Mathematics and Statistics
来源
Numerical Algorithms | 2023年 / 94卷
关键词
Chebyshev projection; Best approximation; Endpoint singularities; Steepest descent method; Chebyshev interpolation; 41A10; 41A25; 41A50; 65D05;
D O I
暂无
中图分类号
学科分类号
摘要
The best polynomial approximation and the Chebyshev approximation are both important in numerical analysis. In tradition, the best approximation is regarded as better than the Chebyshev approximation, because it is usually considered in the uniform norm. However, it is not always superior to the latter, as noticed by Trefethen (Math. Today 47:184–188, 2011) for the function f(x)=|x-0.25|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x) = |x-0.25|$$\end{document}. Recently, Wang (arxiv, 2106.03456, 2021) observed a similar phenomenon for a function with an algebraic singularity and proved it in theory. In this paper, we find that for functions with logarithmic endpoint singularities, the pointwise errors of the Chebyshev approximation are smaller than those of the best approximations of the same degree, except only at the narrow boundary layer. The pointwise error for the Chebyshev series truncated at the degree n is O(n-κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{-\kappa })$$\end{document} (κ=min{2γ+1,2δ+1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa = \min \{2\gamma +1, 2\delta + 1\}$$\end{document}), but increases as O(n-(κ-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(n^{-(\kappa -1)})$$\end{document} at the endpoint singularities. Theorems are given to explain this effect.
引用
收藏
页码:1355 / 1379
页数:24
相关论文
共 50 条