A Locally Quadratic Glimm Functional and Sharp Convergence Rate of the Glimm Scheme for Nonlinear Hyperbolic Systems

被引:0
|
作者
Fabio Ancona
Andrea Marson
机构
[1] Dipartimento di Matematica and C.I.R.A.M.,
[2] Dipartimento di Matematica Pura ed Applicata,undefined
[3] Dipartimento di Matematica Pura ed Applicata,undefined
关键词
Hyperbolic System; Rarefaction Wave; Riemann Problem; Characteristic Family; Contact Discontinuity;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the Cauchy problem for a strictly hyperbolic, N × N quasilinear system in one space dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{t} \, + \, A(u)u_{x} = 0, \qquad u(0, x) = {\bar u}(x), \quad \quad \quad \quad (1)$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{u \mapsto A(u)}}$$\end{document} is a smooth matrix-valued map, and the initial data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\overline u}}$$\end{document} is assumed to have small total variation. We investigate the rate of convergence of approximate solutions of (1) constructed by the Glimm scheme, under the assumption that, letting λk(u), rk(u) denote the k-th eigenvalue and a corresponding eigenvector of A(u), respectively, for each k-th characteristic family the linearly degenerate manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{M}_{k} \doteq \left\{u \in \Omega : \nabla\lambda_{k}(u) \cdot r_{k}(u) = 0\right\}$$\end{document}is either the whole space, or it is empty, or it consists of a finite number of smooth, N–1-dimensional, connected, manifolds that are transversal to the characteristic vector field rk. We introduce a Glimm type functional which is the sum of the cubic interaction potential defined in Bianchini (Discrete Contin Dyn Syst 9:133–166, 2003), and of a quadratic term that takes into account interactions of waves of the same family with strength smaller than some fixed threshold parameter. Relying on an adapted wave tracing method, and on the decrease amount of such a functional, we obtain the same type of error estimates valid for Glimm approximate solutions of hyperbolic systems satisfying the classical Lax assumptions of genuine nonlinearity or linear degeneracy of the characteristic families.
引用
收藏
页码:455 / 487
页数:32
相关论文
共 50 条