共 50 条
Real zeros of Eisenstein series and Rankin-Selberg L-functions
被引:0
|作者:
C. Bauer
Y. Wang
机构:
[1] Dolby Laboratories,Department of Mathematics
[2] Capital Normal University,undefined
来源:
关键词:
Eisenstein series;
Rankin-Selberg ;
-function;
11F03;
11M36;
11M20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove that the Eisenstein series E(z, s) have no real zeroes for s ∈ (0, 1) when the value of the imaginary part of z is in the range \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\tfrac{1}{5}$$
\end{document} < Im z < 4.94. For very large and very small values of the imaginary part of z, E(z, s) have real zeros in (½, 1), i.e. GRH does not hold for the Eisenstein series. Using these properties, we prove that the Rankin-Selberg L-function attached with the Ramanujan τ-function has no real zeros in the critical strip, except at the central point s = ½.
引用
收藏
页码:13 / 27
页数:14
相关论文