Rotation forest based on multimodal genetic algorithm基于多峰遗传算法的旋转森林

被引:0
|
作者
Zhe Xu
Wei-chen Ni
Yue-hui Ji
机构
[1] Tianjin University of Technology,School of Electrical and Electronic Engineering
[2] Tianjin University of Technology,Academic Affairs Office
[3] Tianjin Key Laboratory for Control Theory & Applications in Complicated Industry Systems,undefined
来源
关键词
ensemble learning; decision tree; multimodal optimization; genetic algorithm; 集成学习; 决策树; 多峰优化; 遗传算法;
D O I
暂无
中图分类号
学科分类号
摘要
In machine learning, randomness is a crucial factor in the success of ensemble learning, and it can be injected into tree-based ensembles by rotating the feature space. However, it is a common practice to rotate the feature space randomly. Thus, a large number of trees are required to ensure the performance of the ensemble model. This random rotation method is theoretically feasible, but it requires massive computing resources, potentially restricting its applications. A multimodal genetic algorithm based rotation forest (MGARF) algorithm is proposed in this paper to solve this problem. It is a tree-based ensemble learning algorithm for classification, taking advantage of the characteristic of trees to inject randomness by feature rotation. However, this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method. The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets. Experimental results show that the MGARF method outperforms the other methods, and the number of base learners in MGARF models is much fewer.
引用
收藏
页码:1747 / 1764
页数:17
相关论文
共 50 条
  • [1] 基于多峰遗传算法的旋转森林(英文)
    徐喆
    倪维晨
    吉月辉
    Journal of Central South University, 2021, 28 (06) : 1747 - 1764
  • [2] Rotation forest based on multimodal genetic algorithm
    Xu Zhe
    Ni Wei-chen
    Ji Yue-hui
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2021, 28 (06) : 1747 - 1764
  • [3] 基于遗传算法的多峰函数优化
    辛月兰
    现代电子技术, 2011, 34 (16) : 68 - 69+74
  • [4] 基于量子遗传算法的多峰函数优化研究
    赵静
    路银川
    孔金生
    制造业自动化, 2013, 35 (05) : 94 - 96
  • [5] 多峰搜索的自适应遗传算法
    刘洪杰
    王秀峰
    控制理论与应用, 2004, (02) : 302 - 304+310
  • [6] 基于小生境遗传算法的多峰函数优化
    袁丽华
    黎明
    杨小芹
    周琳霞
    南昌航空工业学院学报(自然科学版), 2005, (04) : 1 - 4
  • [7] 基于Spark的并行遗传算法求解多峰函数极值
    刘鹏
    叶帅
    孟磊
    王灿
    计算机工程与科学, 2018, 40 (02) : 210 - 217
  • [8] 基于免疫量子遗传算法的多峰函数寻优
    徐雪松
    王四春
    计算机应用, 2012, 32 (06) : 1674 - 1677
  • [9] 高维多峰优化的遗传算法设计
    孙如祥
    黄春
    邓国斌
    科技通报, 2017, (08) : 197 - 201+229
  • [10] 多峰函数优化的混合遗传算法
    张琳
    郑忠
    高小强
    重庆大学学报(自然科学版), 2005, (07) : 51 - 54