Ordered phases of lithium nickelite Li1−x−zNi1+xO2

被引:0
|
作者
A. I. Gusev
机构
[1] Russian Academy of Sciences,Institute of Solid
关键词
61.50.Ks; 61.66.Fn; 64.70.Kb;
D O I
暂无
中图分类号
学科分类号
摘要
A symmetry analysis of ordering in lithium nickelite Li1−x−zNi1+xO2 (Li1−x−z□yNi1+xO2) was performed with regard to the substitution of Li and Ni atoms and the occurrence of structural vacancies □ in the metal sublattice. For all the ordered phases, the k9(3) ray of the Lifshitz {k9} star is present in the order-disorder transition channel. This ray determines the consecutive alternation of atomic planes filled with only Ni atoms or only Li atoms and vacancies in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$[1\bar 11]_{B1} $$ \end{document} direction. It was shown that the rhombohedral ordered LiNiO2 phase is formed in the defect-free lithium nickelite, whereas a family of three monoclinic Li3□Ni4O8 (C2/m space group) and Li2□Ni3O6 (C2/m and C2 space groups) superstructures arises as the concentration of structural vacancies increases. For all the superstructures, the order-disorder phase-transition channels were determined and the distribution functions of Li and Ni atoms have been calculated. The long-range order parameters describing each superstructure were found as functions of the Li1−x− zNi1+xO2 composition.
引用
收藏
页码:148 / 154
页数:6
相关论文
共 50 条
  • [1] Ordered phases of lithium nickelite Li1-x-zNi1+xO2
    Gusev, AI
    JETP LETTERS, 2004, 79 (04) : 148 - 154
  • [2] 6/7Li NMR study of the Li1-zNi1+zO2 phases
    Chazel, C
    Ménétrier, M
    Croguennec, L
    Delmas, C
    MAGNETIC RESONANCE IN CHEMISTRY, 2005, 43 (10) : 849 - 857
  • [3] Solid Solutions Having the α-NaFeO2 Structure in the Li1 +yCoO2–Li1 +yMnO2–Li1 +yNiO2–Li1 +yFeO2 System
    G. D. Nipan
    M. N. Smirnova
    D. Yu. Kornilov
    M. A. Kop’eva
    G. E. Nikiforova
    N. P. Simonenko
    S. P. Gubin
    Russian Journal of Inorganic Chemistry, 2020, 65 : 573 - 580
  • [4] Extraction of lithium from spinel phases of the system Li1+xMn2-xO4-δ
    Endres, P
    Ott, A
    Kemmler-Sack, S
    Jager, A
    Mayer, HA
    Praas, HW
    Brandt, K
    JOURNAL OF POWER SOURCES, 1997, 69 (1-2) : 145 - 156
  • [5] On the incorporation of extra Li in lithium cobaltate Li1+xCo1-xO2
    Shinova, E.
    Mandzhukova, Ts.
    Grigorova, E.
    Hristov, M.
    Stoyanova, R.
    Nihtianova, D.
    Zhecheva, E.
    SOLID STATE IONICS, 2011, 187 (01) : 43 - 49
  • [6] Characterization of Li1−xNi1+xO2 prepared by the thermal-assisted precipitation process
    Titipun Thongtem
    Russamee Sitthikhankaew
    Somchai Thongtem
    Russian Journal of Inorganic Chemistry, 2008, 53 : 515 - 519
  • [7] Characterization of Li1−xNi1+xO2 prepared using succinic acid as a complexing agent
    Titipun Thongtem
    Somchai Thongtem
    Inorganic Materials, 2006, 42 : 202 - 209
  • [8] Lithium nickel oxyfluoride (Li1-zNi1+zFyO2-y) and lithium magnesium nickel oxide (Li1-z(MgxNi1-x)1+z O2) cathodes for lithium rechargeable batteries Part I.: Synthesis and characterization of bulk phases
    Naghash, AR
    Lee, JY
    ELECTROCHIMICA ACTA, 2001, 46 (07) : 941 - 951
  • [9] Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in non-aqueous lithium cells
    Mukai, K
    Ariyoshi, K
    Ohzuku, T
    JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 213 - 216
  • [10] The preparation and electrochemical properties of the Li-excess cathode material Li1 + x(Mn0.7Fe0.3)1 − xO2 by coprecipitation method
    Yun-Feng Shi
    Heng Liu
    Guo-Biao Liu
    Xue-Wei You
    Ionics, 2013, 19 : 1503 - 1508