Existence and continuity for the ε-approximation equilibrium problems in Hadamard spaces

被引:0
|
作者
Pakkapon Preechasilp
机构
[1] Pibulsongkram Rajabhat University,Program in Mathematics, Faculty of Education
关键词
-approximation solution; continuity; equilibrium problem; Hadamard space; 47J25; 47N10; 34G20; 65J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the existence of ε-approximate equilibrium points for a bifunction is proved under suitable conditions in the framework of a Hadamard space. We also give the sufficient conditions for the continuity of ε-approximate solution maps to equilibrium problems. Then we apply our results to constrained minimization problems and Nash-equilibrium problems.
引用
收藏
相关论文
共 50 条
  • [1] Existence and continuity for the ε-approximation equilibrium problems in Hadamard spaces
    Preechasilp, Pakkapon
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [2] EQUILIBRIUM PROBLEMS AND THEIR RESOLVENTS IN HADAMARD SPACES
    Kimura, Yasunori
    Kishi, Yusuke
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (09) : 1503 - 1513
  • [3] On Mixed Equilibrium Problems in Hadamard Spaces
    Izuchukwu, Chinedu
    Aremu, Kazeem Olalekan
    Oyewole, Olawale Kazeem
    Mewomo, Oluwatosin Temitope
    Khan, Safeer Hussain
    JOURNAL OF MATHEMATICS, 2019, 2019
  • [4] APPROXIMATING SOLUTIONS OF EQUILIBRIUM PROBLEMS IN HADAMARD SPACES
    Khatibzadeh, Hadi
    Mohebbi, Vahid
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 1 - +
  • [5] Generalized monotone mixed equilibrium problems in FC-spaces: Existence and approximation
    Pany G.
    Chadli O.
    Mohapatra R.N.
    Journal of Applied and Numerical Optimization, 2019, 1 (02): : 183 - 199
  • [6] On the existence and approximation of solutions of generalized equilibrium problem on Hadamard manifolds
    O. K. Oyewole
    L. O. Jolaoso
    K. O. Aremu
    M. Aphane
    Journal of Inequalities and Applications, 2022
  • [7] On the existence and approximation of solutions of generalized equilibrium problem on Hadamard manifolds
    Oyewole, O. K.
    Jolaoso, L. O.
    Aremu, K. O.
    Aphane, M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [8] Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems
    Glaydston de Carvalho Bento
    João Xavier Cruz Neto
    Ítalo Dowell Lira Melo
    Journal of Optimization Theory and Applications, 2022, 195 : 1087 - 1105
  • [9] Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems
    Bento, Glaydston de Carvalho
    Cruz Neto, Joao Xavier
    Lira Melo, Italo Dowell
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 1087 - 1105
  • [10] Existence and Continuity of Solutions to Simultaneous Vector Equilibrium Problems
    Kazmi, K. R.
    Khan, S. A.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (02) : 281 - 291