Verification of ARMA identification for modelling temporal correlations of GNSS observations using the ARMASA toolbox

被引:0
|
作者
Xiaoguang Luo
Michael Mayer
Bernhard Heck
机构
[1] Karlsruhe Institute of Technology (KIT),Geodetic Institute
来源
Studia Geophysica et Geodaetica | 2011年 / 55卷
关键词
physical correlations; stochastic model; order selection; ARMA process; time series analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The classical least-squares (LS) algorithm is widely applied in practice of processing observations from Global Satellite Navigation Systems (GNSS). However, this approach provides reliable estimates of unknown parameters and realistic accuracy measures only if both the functional and stochastic models are appropriately specified. One essential deficiency of the stochastic model implemented in many available GNSS software products consists in neglecting temporal correlations of GNSS observations. Analysing time series of observation residuals resulting from the LS evaluation, the temporal correlation behaviour of GNSS measurements can be efficiently described by means of socalled autoregressive moving average (ARMA) processes. For a given noise realisation, a well-fitting ARMA model can be automatically estimated and identified using the ARMASA toolbox available free of charge in MATLAB® Central.
引用
收藏
页码:537 / 556
页数:19
相关论文
共 19 条
  • [1] Verification of ARMA identification for modelling temporal correlations of GNSS observations using the ARMASA toolbox
    Luo, Xiaoguang
    Mayer, Michael
    Heck, Bernhard
    STUDIA GEOPHYSICA ET GEODAETICA, 2011, 55 (03) : 537 - 556
  • [2] Estimation of ionospheric temporal gradients using GNSS observations
    Raghunath, Swapna
    Varun Chowdary, K.
    Vennela, K.
    Siva Nandini, D.
    Venkata Ratnam, D.
    International Journal of Earth Sciences and Engineering, 2015, 8 (05): : 2033 - 2037
  • [3] Identification of ARMA models using intermittent and quantized output observations
    Marelli, Damian
    You, Keyou
    Fu, Minyue
    AUTOMATICA, 2013, 49 (02) : 360 - 369
  • [4] IDENTIFICATION OF ARMA MODELS USING INTERMITTENT AND QUANTIZED OUTPUT OBSERVATIONS
    Marelli, Damian
    You, Keyou
    Fu, Minyue
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4076 - 4079
  • [5] Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula
    Zhang, Ning
    Kang, Chongqing
    Xu, Qianyao
    Jiang, Changming
    Chen, Zhixu
    Liu, Jun
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2013, 8 (06) : 1615 - 1625
  • [6] Identification and Verification of Geodynamic Risk Zones in the Western Carpathians Using Remote Sensing, Geophysical and GNSS Data
    Pospisil, Lubomil
    Bartonek, Dalibor
    Bures, Jiri
    Svabensky, Otakar
    SURVEYS IN GEOPHYSICS, 2025, 46 (01) : 227 - 257
  • [7] SVM Based Event Detection and Identification: Exploiting Temporal Attribute Correlations Using SensGru
    Shahid, Nauman
    Naqvi, Ijaz Haider
    Bin Qaisar, Saad
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [8] Free vibration-based system identification using temporal cross-correlations
    Narazaki, Yasutaka
    Hoskere, Vedhus
    Spencer, Billie F., Jr.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (08):
  • [9] The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations
    Donovan, Michael F.
    Williams, Earle R.
    Kessinger, Cathy
    Blackburn, Gary
    Herzegh, Paul H.
    Bankert, Richard L.
    Miller, Steve
    Mosher, Frederick R.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (01) : 164 - 184
  • [10] Spatio-Temporal Validation of GNSS-Derived Global Ionosphere Maps Using 16 Years of Jason Satellites Observations
    Poniatowski, Mateusz
    Nykiel, Grzegorz
    Borries, Claudia
    Szmytkowski, Jedrzej
    REMOTE SENSING, 2023, 15 (20)