Comparison of parametric and nonparametric standardized precipitation index for detecting meteorological drought over the Indian region

被引:0
|
作者
Naresh K. Mallenahalli
机构
[1] National Remote Sensing Center,
[2] Balanagar,undefined
来源
关键词
Drought assessment; Standardized precipitation index; Pearson-3 distribution; L-Moments; Cohen’s kappa; Gringorten; Weibull; Hazen; Plotting position; Normality; Quantiles;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, Standardized Precipitation Index (SPI) derived from parametric and nonparametric methods using 0.25∘ gridded rainfall data from 1901 to 2013 (113 years) generated by India Meteorological Department (IMD) was compared for understanding drought conditions over the Indian region. The parametric SPI was computed using a three-parameter Gamma distribution function, whereas nonparametric SPI was computed using Gringorten, Weibull, and Hazen plotting positions, on a 4-month cumulative rainfall data of June–September (SPI-4) representing the southwest monsoon season. Nonnormality is a major concern if equal-sized intervals are drawn for interpretation, and SPI being a normalized index wherein classes are standard deviations from normal, its impact on drought assessment needs to be understood. Accordingly, in our study, normality tests were performed using the Shapiro-Wilk method on SPI derived from both parametric and nonparametric methods. The SPI showed 100% of grid cells conforming to normality in the case of nonparametric methods, whereas in the case of parametric approach it was only 80%. The remaining 20% of nonnormality in parametric SPI is spread over montane, tropical wet, and semi-arid regions of India. Furthermore, differences in the estimation of dryness are observed in the range of 1.0 to 2.5% between nonparametric and parametric SPI for the drought years considered this study. The quantile analysis on all grid cells for the drought year 2002 showed an important fact that at 0.025 quantile only 2.6% of grid cells are in the extremely dry condition as per parametric SPI, whereas in the case of nonparametric SPI it is 6.9%. For the drought year 1939 in grid cells where normality is not followed in parametric SPI, Cohen’s kappa (κ = 0.15) under extreme dryness category indicates large disagreements between parametric and nonparametric SPI. The temporal analysis of Cohen’s kappa computed for each grid cell over drought years shows that in 22.5% of cases the drought category between nonparametric and parametric SPI is not in perfect agreement. Hence, the nonparametric SPI can better categorize the drought classes, representing well the extent of dryness and normality conditions, it is highly recommended for drought assessment over India.
引用
收藏
页码:219 / 236
页数:17
相关论文
共 50 条
  • [1] Comparison of parametric and nonparametric standardized precipitation index for detecting meteorological drought over the Indian region
    Mallenahalli, Naresh K.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2020, 142 (1-2) : 219 - 236
  • [2] Spatiotemporal analysis of meteorological drought variability in the Indian region using standardized precipitation index
    Kumar, M. Naresh
    Murthy, C. S.
    Sai, M. V. R. Sesha
    Roy, P. S.
    METEOROLOGICAL APPLICATIONS, 2012, 19 (02) : 256 - 264
  • [3] Trends and behaviour of meteorological drought (1901-2008) over Indian region using standardized precipitation-evapotranspiration index
    Das, Prabir Kumar
    Dutta, Dibyendu
    Sharma, J. R.
    Dadhwal, V. K.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (02) : 909 - 916
  • [4] Statistical comparison between the standardized precipitation index and the standardized precipitation drought index
    Mega, Nabil
    Medjerab, Abderrahmane
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2021, 7 (01) : 373 - 388
  • [5] Statistical comparison between the standardized precipitation index and the standardized precipitation drought index
    Nabil Mega
    Abderrahmane Medjerab
    Modeling Earth Systems and Environment, 2021, 7 : 373 - 388
  • [6] Trends and variability of meteorological drought over the districts of India using standardized precipitation index
    Guhathakurta, P.
    Menon, Preetha
    Inkane, P. M.
    Krishnan, Usha
    Sable, S. T.
    JOURNAL OF EARTH SYSTEM SCIENCE, 2017, 126 (08)
  • [7] Trends and variability of meteorological drought over the districts of India using standardized precipitation index
    P Guhathakurta
    Preetha Menon
    P M Inkane
    Usha Krishnan
    S T Sable
    Journal of Earth System Science, 2017, 126
  • [8] Application of standardized precipitation index for monitoring meteorological drought and wet conditions in Garhwal region (Uttarakhand)
    Malik A.
    Kumar A.
    Arabian Journal of Geosciences, 2021, 14 (9)
  • [9] Integrated TRMM Data and Standardized Precipitation Index to Monitor the Meteorological Drought
    Abdulrazzaq, Zaidoon T.
    Hasan, Raghad H.
    Aziz, Nadia A.
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2019, 5 (07): : 1590 - 1598
  • [10] Analysis of meteorological drought in the Ruhr basin by using the Standardized Precipitation Index
    Khadr, Mosaad
    Morgenschweis, Gerd
    Schlenkhoff, Andreas
    World Academy of Science, Engineering and Technology, 2009, 33 : 607 - 616