Pre-Lie Groups in Abstract Differential Geometry

被引:0
|
作者
M. H. Papatriantafillou
机构
[1] University of Athens,Department of Mathematics
来源
关键词
Primary 18F15; Secondary 22E60; 43A65; Differential triad; Lie group; left-invariant vector field; adjoint representation;
D O I
暂无
中图分类号
学科分类号
摘要
We study groups with “differential structure” in the framework of Abstract Differential Geometry, an abstraction of the classical differential geometry of manifolds, via sheaf-theoretic methods, without ordinary calculus; the basic tool is the notion of a differential triad. First, we consider pre-Lie groups, i.e., semi-topological groups with compatible differential triads and we prove that such groups have “left-invariant vector fields” and “left-invariant derivations”, behaving like the classical ones. Next, for every pre-Lie group, we define an appropriate Lie algebra and prove the existence of a naturally associated adjoint representation of the initial group into the latter.
引用
收藏
页码:315 / 328
页数:13
相关论文
共 50 条
  • [1] Pre-Lie Groups in Abstract Differential Geometry
    Papatriantafillou, M. H.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (02) : 315 - 328
  • [2] ON DIFERENTIAL CALCULUS ON PRE-LIE GROUPS
    Nicolae, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 61 (01): : 19 - 28
  • [3] Automorphism Groups of Pre-Lie Witt Doubles
    Pozhidaev, A. P.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (06) : 1379 - 1389
  • [4] NONCOMMUTATIVE DIFFERENTIALS ON POISSON-LIE GROUPS AND PRE-LIE ALGEBRAS
    Majid, Shahn
    Tao, Wen-Qing
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 284 (01) : 213 - 256
  • [5] ON TANGENT GROUPS OF 2-STEP NILPOTENT PRE-LIE GROUPS
    Nicolae, Mihai
    MATHEMATICAL REPORTS, 2018, 20 (01): : 11 - 27
  • [6] Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras
    Wang, You
    Bai, Chengming
    Liu, Jiefeng
    Sheng, Yunhe
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [7] Lie groups and differential geometry
    Aguilar, MA
    LATIN-AMERICAN SCHOOL OF PHYSICS XXX ELAF: GROUP THEORY AND ITS APPLICATIONS, 1996, (365): : 33 - 68
  • [8] PRE-LIE LAWS IN INTERACTION
    Manchon, Dominique
    Saidi, Abdellatif
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3662 - 3680
  • [9] Free Pre-Lie Algebras are Free as Lie Algebras
    Chapoton, Frederic
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (03): : 425 - 437
  • [10] PRE-LIE DEFORMATION THEORY
    Dotsenko, Vladimir
    Shadrin, Sergey
    Vallette, Bruno
    MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (03) : 505 - 543