Pseudodifferential Operators Associated with a Semigroup of Operators

被引:0
|
作者
Frédéric Bernicot
Dorothee Frey
机构
[1] CNRS,Laboratoire Jean Leray
[2] Université de Nantes,Mathematical Sciences Institute
[3] Australian National University,undefined
关键词
Pseudodifferential operators; Metric measure space; Heat semigroup; 35S05; 38B10;
D O I
暂无
中图分类号
学科分类号
摘要
Related to a semigroup of operators on a metric measure space, we define and study pseudodifferential operators (including the setting of Riemannian manifolds, fractals, graphs etc.). Boundedness on Lp for pseudodifferential operators of order 0 is proved. We mainly focus on symbols belonging to the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{0}_{1,\delta}$\end{document} for δ∈[0,1). For the limit class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{0}_{1,1}$\end{document}, we describe some results by restricting our attention to the case of a sub-Laplacian operator on a Riemannian manifold.
引用
收藏
页码:91 / 118
页数:27
相关论文
共 50 条