Related to a semigroup of operators on a metric measure space, we define and study pseudodifferential operators (including the setting of Riemannian manifolds, fractals, graphs etc.). Boundedness on Lp for pseudodifferential operators of order 0 is proved. We mainly focus on symbols belonging to the class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$S^{0}_{1,\delta}$\end{document} for δ∈[0,1). For the limit class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$S^{0}_{1,1}$\end{document}, we describe some results by restricting our attention to the case of a sub-Laplacian operator on a Riemannian manifold.