Minimal Geometric Deformation: the inverse problem

被引:0
|
作者
Ernesto Contreras
机构
[1] Escuela Superior Politécnica del Litoral,
[2] ESPOL,undefined
[3] Facultad de Ciencias Naturales y Matemáticas,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that any static and spherically symmetric anisotropic solution of the Einstein field equations can be thought as a system sourced by certain deformed isotropic system in the context of Minimal Geometric Deformation-decoupling approach. To be more precise, we developed a mechanism to obtain an isotropic solution from any anisotropic solution of the Einstein field equations. As an example, we implement the method to obtain the sources of a simple static anisotropic and spherically symmetric traversable wormhole.
引用
收藏
相关论文
共 50 条
  • [1] Minimal Geometric Deformation: the inverse problem
    Contreras, Ernesto
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (08):
  • [2] The inverse deformation problem
    Eardley, Timothy
    Manoharmayum, Jayanta
    COMPOSITIO MATHEMATICA, 2016, 152 (08) : 1725 - 1739
  • [3] Minimal geometric deformation in a cloud of strings
    Grigoris Panotopoulos
    Ángel Rincón
    The European Physical Journal C, 2018, 78
  • [4] Minimal geometric deformation in a cloud of strings
    Panotopoulos, Grigoris
    Rincon, Angel
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (10):
  • [5] The minimal geometric deformation approach extended
    Casadio, R.
    Ovalle, J.
    da Rocha, Roldao
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (21)
  • [6] A geometric inverse problem for the Boussinesq system
    Doubova, A.
    Fernandez-Cara, E.
    Gonzalez-Burgos, M.
    Ortega, J. H.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (06): : 1213 - 1238
  • [7] GEOMETRIC ASPECTS OF THE INVERSE SCATTERING PROBLEM
    STEPANOV, VN
    SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (01) : 111 - 121
  • [8] The Minimal Geometric Deformation Approach: A Brief Introduction
    Ovalle, J.
    Casadio, R.
    Sotomayor, A.
    ADVANCES IN HIGH ENERGY PHYSICS, 2017, 2017
  • [9] An inverse problem of the flux for minimal surfaces
    Kato, S
    Umehara, M
    Yamada, K
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1997, 46 (02) : 529 - 559
  • [10] An inverse problem for the minimal surface equation
    Nurminen, Janne
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227