Complexity of stochastic dual dynamic programming

被引:0
|
作者
Guanghui Lan
机构
[1] Georgia Institute of Technology,H. Milton Stewart School of Industrial and Systems Engineering
来源
Mathematical Programming | 2022年 / 191卷
关键词
90C25; 90C06; 90C22; 49M37; 93A14; 90C15;
D O I
暂无
中图分类号
学科分类号
摘要
Stochastic dual dynamic programming is a cutting plane type algorithm for multi-stage stochastic optimization originated about 30 years ago. In spite of its popularity in practice, there does not exist any analysis on the convergence rates of this method. In this paper, we first establish the number of iterations, i.e., iteration complexity, required by a basic dual dynamic programming method for solving single-scenario multi-stage optimization problems, by introducing novel mathematical tools including the saturation of search points. We then refine these basic tools and establish the iteration complexity for an explorative dual dynamic programing method proposed herein and the classic stochastic dual dynamic programming method for solving more general multi-stage stochastic optimization problems under the standard stage-wise independence assumption. Our results indicate that the complexity of these methods mildly increases with the number of stages T, in fact linearly dependent on T for discounted problems. Therefore, they are efficient for strategic decision making which involves a large number of stages, but with a relatively small number of decision variables in each stage. Without explicitly discretizing the state and action spaces, these methods might also be pertinent to the related reinforcement learning and stochastic control areas.
引用
收藏
页码:717 / 754
页数:37
相关论文
共 50 条
  • [1] Complexity of stochastic dual dynamic programming
    Lan, Guanghui
    MATHEMATICAL PROGRAMMING, 2022, 191 (02) : 717 - 754
  • [2] Correction to: Complexity of stochastic dual dynamic programming
    Guanghui Lan
    Mathematical Programming, 2022, 194 : 1187 - 1189
  • [3] Complexity of stochastic dual dynamic programming (vol 191, pg 717, 2022)
    Lan, Guanghui
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 1187 - 1189
  • [4] Stochastic dual dynamic integer programming
    Jikai Zou
    Shabbir Ahmed
    Xu Andy Sun
    Mathematical Programming, 2019, 175 : 461 - 502
  • [5] Stochastic dual dynamic integer programming
    Zou, Jikai
    Ahmed, Shabbir
    Sun, Xu Andy
    MATHEMATICAL PROGRAMMING, 2019, 175 (1-2) : 461 - 502
  • [6] Analysis of stochastic dual dynamic programming method
    Shapiro, Alexander
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 209 (01) : 63 - 72
  • [7] On conditional cuts for stochastic dual dynamic programming
    van Ackooij, W.
    Warin, X.
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2020, 8 (02) : 173 - 199
  • [8] INEXACT CUTS IN STOCHASTIC DUAL DYNAMIC PROGRAMMING
    Guigues, Vincent
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 407 - 438
  • [9] Improving the performance of Stochastic Dual Dynamic Programming
    de Matos, Vitor L.
    Philpott, Andy B.
    Finardi, Erlon C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 196 - 208
  • [10] DISTRIBUTIONALLY ROBUST STOCHASTIC DUAL DYNAMIC PROGRAMMING
    Duque, Daniel
    Morton, David P.
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 2841 - 2865