A modular neural network for super-resolution of human faces

被引:0
|
作者
Manuel Carcenac
机构
[1] Eastern Mediterranean University,Computer Engineering Department
来源
Applied Intelligence | 2009年 / 30卷
关键词
Multilayer perceptron; Modular neural network; Levenberg-Marquardt method; Parallelization; Image transformation; Super-resolution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the original and versatile architecture of a modular neural network and its application to super-resolution. Each module is a small multilayer perceptron, trained with the Levenberg-Marquardt method, and is used as a generic building block. By connecting the modules together to establish a composition of their individual mappings, we elaborate a lattice of modules that implements full connectivity between the pixels of the low-resolution input image and those of the higher-resolution output image. After the network is trained with patterns made up of low and high-resolution images of objects or scenes of the same kind, it will be able to enhance dramatically the resolution of a similar object’s representation. The modular nature of the architecture allows the training phase to be readily parallelized on a network of PCs. Finally, it is shown that the network performs global-scale reconstruction of human faces from very low resolution input images.
引用
收藏
页码:168 / 186
页数:18
相关论文
共 50 条
  • [1] A modular neural network for super-resolution of human faces
    Carcenac, Manuel
    APPLIED INTELLIGENCE, 2009, 30 (02) : 168 - 186
  • [2] Accelerating the Super-Resolution Convolutional Neural Network
    Dong, Chao
    Loy, Chen Change
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 391 - 407
  • [3] Deconvolutional neural network for image super-resolution
    Cao, Feilong
    Yao, Kaixuan
    Liang, Jiye
    NEURAL NETWORKS, 2020, 132 : 394 - 404
  • [4] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [5] A SUPER-RESOLUTION MAPPING USING A CONVOLUTIONAL NEURAL NETWORK
    Kasetkasem, Teerasit
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3077 - 3080
  • [6] Adaptive Residual Neural Network for Image Super-Resolution
    Li, Weiwei
    Li, Xinlong
    Liu, Zhenbing
    MIPPR 2019: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION TECHNIQUES; AND MEDICAL IMAGING, 2020, 11431
  • [7] MobileSR: Efficient Convolutional Neural Network for Super-resolution
    Zhang, Lulu
    Li, HuiYong
    Liu, Xuefeng
    Niu, Jianwei
    Wu, Jiyan
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [8] Optimizing Hopfield Neural Network for Super-Resolution Mapping
    Muad, Anuar M.
    Zaki, Siti Khadijah Mohd
    Jasim, Sarah Abbood
    JURNAL KEJURUTERAAN, 2020, 32 (01): : 91 - 97
  • [9] Image Super-Resolution With Deep Convolutional Neural Network
    Ji, Xiancai
    Lu, Yao
    Guo, Li
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 626 - 630
  • [10] Super-resolution microscopy by grating and deep neural network
    Liu, Xingyu
    Zhang, Zongyan
    Yang, Songlin
    Jiang, Wenli
    Yu, Jiang
    Fang, Wenjing
    Zhang, Jia-Yu
    Ye, Yong-Hong
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (15)