Linearized stability for nonlinear evolution equations

被引:0
|
作者
Wolfgang M. Ruess
机构
[1] Fachbereich Mathematik,
[2] Universität Essen,undefined
[3] D-45117 Essen,undefined
[4] Germany,undefined
[5] e-mail: w.ruess@uni-essen.de,undefined
来源
关键词
Mathematics Subject Classification(2000): 47J35, 47H06, 35R10, 34K20.¶Key words: Accretive operators, nonlinear evolution equations, linearized stability, partial differential delay equations.;
D O I
暂无
中图分类号
学科分类号
摘要
We present a general principle of linearized stability at an equilibrium point for the Cauchy problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \dot{u} (t) + Au(t) \ni 0, t \geq 0, u(0) = u_0 $\end{document}, for an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \omega $\end{document}-accretive, possibly multivalued, operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ A \subset X \times X $\end{document} in a Banach space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ X $\end{document}, that has a linear 'resolvent-derivative' \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \tilde{A} \subset X \times X $\end{document}. The result is applied to derive linearized stability results for the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ A = (B + G) $\end{document} under 'minimal' differentiability assumptions on the operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ B \subset X \times X $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ G: cl D(B) \to X $\end{document} at the equilibrium point, as well as for partial differential delay equations.
引用
收藏
页码:361 / 373
页数:12
相关论文
共 50 条