共 50 条
Uniform estimates for spherical functions on complex semisimple Lie groups
被引:0
|作者:
M. Cowling
A. Nevo
机构:
[1] School of Mathematics,
[2] UNSW,undefined
[3] Sydney NSW 2052,undefined
[4] Australia,undefined
[5] e-mail: m.cowling@unsw.edu.au,undefined
[6] Department of Mathematics,undefined
[7] Technion,undefined
[8] Haifa 32 000,undefined
[9] Israel,undefined
[10] e-mail: anevo@tx.technion.ac.il,undefined
来源:
关键词:
Symmetric Space;
Simple Group;
Spectral Parameter;
Ergodic Theorem;
Spherical Function;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove new estimates for spherical functions and their derivatives on complex semisimple Lie groups, establishing uniform polynomial decay in the spectral parameter. This improves the customary estimate arising from Harish-Chandra's series expansion, which gives only a polynomial growth estimate in the spectral parameter. In particular, for arbitrary positive-definite spherical functions \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \varphi_\lambda $\end{document} on higher rank complex simple groups, we establish estimates for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ |d^k\varphi_\lambda(a_t)/dt^k| $\end{document} which are of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ (1\,+ \parallel \lambda \parallel)^{k-\gamma} $\end{document} in the spectral parameter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \lambda $\end{document} and have uniform exponential decay in regular directions in the group variable at. Here \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \gamma $\end{document} is an explicit constant depending on G, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \lambda $\end{document} may be singular, for instance.¶The uniformity of the estimates is the crucial ingredient needed in order to apply classical spectral methods and Littlewood—Paley—Stein square functions to the analysis of singular integrals in this context. To illustrate their utility, we prove maximal inequalities in Lp for singular sphere averages on complex semisimple Lie groups for all p in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ (1\,+ {1 \over 2\gamma}, \infty) $\end{document}. We use these to establish singular differentiation theorems and pointwise ergodic theorems in Lp for the corresponding singular spherical averages on locally symmetric spaces, as well as for more general measure preserving actions.
引用
收藏
页码:900 / 932
页数:32
相关论文