The geometric structures and mechanisms for hydrogen abstraction from cyclohexane for four high-valent complexes, [FeIV(O)(TMC)(NCMe)]2+ (where TMC is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane; 1-NCMe), the inverted isomer [FeIV(NCMe)(TMC)(O)]2+ (2-NCMe), [RuIV(O)(TMC)(NCMe)]2+ (the ruthenium analogue of 1-NCMe; 3-NCMe), and the inverted isomer [RuIV(NCMe)(TMC)(O)]2+ (4-NCMe), were investigated using density functional theory. The axial NCMe ligand was found to be sterically more hindered in 2-NCMe than in 1-NCMe, which is in accord with the calculated results that the Fe–Laxial distance is longer in the former. Both 1-NCMe and 2-NCMe are capable of hydrogen abstraction from cyclohexane via two-state reactivity patterns. In contrast, 3-NCMe and 4-NCMe react with cyclohexane by a single-state mechanism. The reaction pathways computed reveal that 2-NCMe is more reactive than 1-NCMe, in agreement with experimental results, whereas the reactivity of 3-NCMe and 4-NCMe shows little dependence on whether the oxo unit is syn or anti to the four N-methyl groups. Our analysis shows that along the reaction pathway for 2-NCMe in the triplet spin state, the NCMe ligand moves away from the iron center, and therefore the energy of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \sigma_{z}^{* 2} $$\end{document} (α-spin) orbital decreases and an electron is transferred to this orbital. Finally, we calculated the kinetic isotope effect and investigated the relationship between this effect and reaction barriers.