An extended model for a spiking neuron class

被引:0
|
作者
Ana M. G. Guerreiro
Carlos A. Paz de Araujo
机构
[1] Federal University of Rio Grande do Norte,Department of Computer Engineering
[2] University of Colorado at Colorado Springs,Department of Electrical and Computer Engineering
来源
Biological Cybernetics | 2007年 / 97卷
关键词
Boolean Function; Extended Model; Dynamic Threshold; Decay Time Constant; IEEE Trans Neural;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes an extension to the model of a spiking neuron for information processing in artificial neural networks, developing a new approach for the dynamic threshold of the integrate-and-fire neuron. This new approach invokes characteristics of biological neurons such as the behavior of chemical synapses and the receptor field. We demonstrate how such a digital model of spiking neurons can solve complex nonlinear classification with a single neuron, performing experiments for the classical XOR problem. Compared with rate-coded networks and the classical integrate-and-fire model, the trained network demonstrated faster information processing, requiring fewer neurons and shorter learning periods. The extended model validates all the logic functions of biological neurons when such functions are necessary for the proper flow of binary codes through a neural network.
引用
收藏
页码:211 / 219
页数:8
相关论文
共 50 条
  • [1] An extended model for a spiking neuron class
    Guerreiro, Ana M. G.
    de Araujo, Carlos A. Paz
    BIOLOGICAL CYBERNETICS, 2007, 97 (03) : 211 - 219
  • [2] A Comparison for Probabilistic Spiking Neuron Model and Spiking Integrated and Fired Neuron Model
    Wang Xiuqing
    Hou Zeng-Guang
    Zeng Hui
    Tan Min
    Wang Yongji
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 5059 - 5064
  • [3] A New Spiking Neuron Model
    Chandra, B.
    Babu, K. V. Naresh
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [4] A computational neurogenetic model of a spiking neuron
    Kasabov, N
    Benuskova, L
    Wysoski, SG
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 446 - 451
  • [5] Glutamate gated spiking Neuron Model
    Deka, Krisha M.
    Roy, Soumik
    ANNALS OF NEUROSCIENCES, 2014, 21 (01) : 14 - 18
  • [6] A spiking neuron model: applications and learning
    Christodoulou, C
    Bugmann, G
    Clarkson, TG
    NEURAL NETWORKS, 2002, 15 (07) : 891 - 908
  • [7] Compartmental spiking neuron model CSNM
    Bakhshiev, A. V.
    Demcheva, A. A.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (03): : 299 - 310
  • [8] A modified nanoelectronic spiking neuron model
    Beatriz dos Santos Pês
    Janaina Gonçalves Guimarães
    Marlio José do Couto Bonfim
    Journal of Computational Electronics, 2017, 16 : 98 - 105
  • [9] A Spiking Neuron Model for Binocular Rivalry
    Carlo R. Laing
    Carson C. Chow
    Journal of Computational Neuroscience, 2002, 12 : 39 - 53
  • [10] A spiking neuron model for binocular rivalry
    Laing, CR
    Chow, CC
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2002, 12 (01) : 39 - 53