Groundstates for Kirchhoff-Type Equations with Hartree-Type Nonlinearities

被引:0
|
作者
Yan Li
Xinfu Li
Shiwang Ma
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] Tianjin University of Commerce,School of Science
来源
Results in Mathematics | 2019年 / 74卷
关键词
Kirchhoff equations; positive solution; Pohožaev identity; ground state solution; Hartree-type nonlinearity; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following nonlinear problem of Kirchhoff-type with Hartree-type nonlinearities: -a+b∫RN|Du|2Δu+V(x)u=(Iα∗|u|p)|u|p-2u,x∈RN,u∈H1(RN),u>0,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{\mathbb {R}^N}|Du|^2\right) \Delta u+V(x)u=(I_{\alpha }*|u|^{p})|u|^{p-2}u,&{}\quad x\in \mathbb {R}^N,\\ \\ u\in H^1(\mathbb {R}^N),\quad u>0,&{}\quad x\in \mathbb {R}^N, \end{array}\right. \end{aligned}$$\end{document}where N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}, max{0,N-4}<α<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{0,N-4\}<\alpha <N$$\end{document}, 2<p<N+αN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<\frac{N+\alpha }{N-2}$$\end{document}, a>0,b≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0,b\ge 0$$\end{document} are constants, Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\alpha }$$\end{document} is the Riesz potential and V:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V{:}\,\mathbb {R}^N\rightarrow \mathbb {R}$$\end{document} is a potential function. Under certain assumptions on V, we prove that the problem has a positive ground state solution by using global compactness lemma, monotonicity technique and some new tricks recently given in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Groundstates for Kirchhoff-Type Equations with Hartree-Type Nonlinearities
    Li, Yan
    Li, Xinfu
    Ma, Shiwang
    RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [2] A note on Kirchhoff-type equations with Hartree-type nonlinearities
    Lu, Dengfeng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 : 35 - 48
  • [3] INFINITELY MANY SOLUTIONS FOR A QUASILINEAR KIRCHHOFF-TYPE EQUATION WITH HARTREE-TYPE NONLINEARITIES
    Zhu, Chuanxi
    Zhou, Li
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (05): : 1987 - 1996
  • [4] Ground state solution for some new Kirchhoff-type equations with Hartree-type nonlinearities and critical or supercritical growth
    Zhou, Li
    Zhu, Chuanxi
    OPEN MATHEMATICS, 2022, 20 (01): : 751 - 768
  • [5] Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities
    Yin, Lifeng
    Gan, Wenbin
    Jiang, Shuai
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [6] Ground states for Kirchhoff equation with Hartree-type nonlinearities
    Chen, Peng
    Liu, Xiaochun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (01) : 587 - 608
  • [7] Existence and concentration of ground state solutions for critical Kirchhoff-type equation involving Hartree-type nonlinearities
    Lifeng Yin
    Wenbin Gan
    Shuai Jiang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [8] Positive Solutions for the Kirchhoff-Type Equation with Hartree Nonlinearities
    Shanni Zhu
    Guofeng Che
    Mediterranean Journal of Mathematics, 2022, 19
  • [9] Positive Solutions for the Kirchhoff-Type Equation with Hartree Nonlinearities
    Zhu, Shanni
    Che, Guofeng
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
  • [10] Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity
    Yuan, Shuai
    Gao, Yuning
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 271 - 294