In this paper, we consider the following nonlinear problem of Kirchhoff-type with Hartree-type nonlinearities: -a+b∫RN|Du|2Δu+V(x)u=(Iα∗|u|p)|u|p-2u,x∈RN,u∈H1(RN),u>0,x∈RN,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{\mathbb {R}^N}|Du|^2\right) \Delta u+V(x)u=(I_{\alpha }*|u|^{p})|u|^{p-2}u,&{}\quad x\in \mathbb {R}^N,\\ \\ u\in H^1(\mathbb {R}^N),\quad u>0,&{}\quad x\in \mathbb {R}^N, \end{array}\right. \end{aligned}$$\end{document}where N≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N\ge 3$$\end{document}, max{0,N-4}<α<N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\max \{0,N-4\}<\alpha <N$$\end{document}, 2<p<N+αN-2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2<p<\frac{N+\alpha }{N-2}$$\end{document}, a>0,b≥0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a>0,b\ge 0$$\end{document} are constants, Iα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_{\alpha }$$\end{document} is the Riesz potential and V:RN→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V{:}\,\mathbb {R}^N\rightarrow \mathbb {R}$$\end{document} is a potential function. Under certain assumptions on V, we prove that the problem has a positive ground state solution by using global compactness lemma, monotonicity technique and some new tricks recently given in the literature.